</pre><pre name="code" class="cpp">/*几何模版*/
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
struct point
{
double x,y,d;
point(double a,double b):x(a),y(b){}
point(){}
};
typedef point vec;
//向量+向量=向量
//点 +向量=点
vec operator + ( vec a, vec b) { return vec(a.x+b.x,a.y+b.y);}
vec operator - ( point a, point b) { return vec(a.x-b.x,a.y-b.y);}
vec operator * ( vec a, double p) { return vec(a.x*p,a.y*p);}
vec operator / ( vec a, double p) { return vec(a.x/p,a.y/p);}
bool operator < ( const point &a,const point &b)
{
return a.x<b.x || (a.x == b.x &&a.y<b.y);
}
const double eps =1e-6;
int dcmp( double x)
{
if( fabs(x)<eps )return 0;
return x < 0?-1:1;
}
bool operator == ( const point &a,const point &b)
{
return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y)==0;
}
// 点积(向量 a,向量 b)
double dot( vec a,vec b) { return a.x*b.x + a.y*b.y;}
double length( vec a) { return sqrt(dot(a,a) );}
//向量 a,b 的夹角
double angle(vec a,vec b)
{
return acos( dot(a,b)/length(a)/length(b) );
}
double cross( vec a,vec b ){ return a.x*b.y - a.y*b.x;}
double area( point a,point b,point c){ return cross(b-a,c-a)/2.0;}
// 向量 a 旋转 rad 弧度
vec rotat(vec a,double rad)
{
return vec( a.x*cos(rad)-a.y*sin(rad),a.x*sin(rad)+a.y*cos(rad));
}
//两条直线 p+tv 和 q + tw 有唯一交点,当且仅当 cross(v,w)!=0
point getlinetnersection(point p,vec v,point q,vec w)
{
vec u = p-q;
double t = cross(w,u) /cross(v,w);
return p + v*t;
}
//点到直线的距离
double distancetoline( point p,point a,point b)
{
vec v1 = b-a;
vec v2 = p-a;
return fabs( cross(v1,v2) / length(v1));//去绝对值得到有向距离
}
//点到线段的距离
double distosegment( point p,point a,point b)
{
if( a==b )
return length(p-a);
vec v1 = b-a;
vec v2 = p-a;
vec v3 = p-b;
if( dcmp( dot(v1,v2)) < 0 )return length(v2);
else
if( dcmp ( dot(v1,v3)) >0 )return length(v3);
else
return fabs( cross(v1,v2)/length(v1) );
}
// 两条线段规范相交:每条线段的两个端点在另一条线段的两侧
bool segproperinter( point a1,point a2,point b1,point b2)
{
double c1 = cross( a2-a1, b1-a1 ),
c2 = cross( a2-a1, b2-a2 ),
c3 = cross( b2-b1, a1-b1 ),
c4 = cross( b2-b1, a2-b1 );
return dcmp( c1 ) * dcmp( c2 ) < 0
&& dcmp( c3 )*dcmp( c4 )<0;
}
//一个点在另外一条线段上(=包括端点
bool onsegment( point p,point a1,point a2)
{
return dcmp( cross(a1-p,a2-p)) == 0
&& dcmp( dot(a1-p,a2-p))<=0;
}
//多边形面积
double polyarea(point *p,int n)
{
double area = 0;
for( int i = 1;i < n-1;++i)
area += cross( p[i]-p[0],p[i+1]-p[0]);
return area/2.0;
}
int main()
{
return 0;
}