Given two sequences of numbers : a[1], a[2], …… , a[N], and b[1], b[2], …… , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], …… , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], …… , a[N]. The third line contains M integers which indicate b[1], b[2], …… , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
Sample Output
6
-1
kmp不止可以用在字符串,还可以用在数字上……(笑着哭)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std;
int t[1000005], p[10005];
int NEXT[10005];
int n, m;
void getnext(int p[])
{
int i = 0, j = -1;
NEXT[0] = -1;
while(i<m)
{
if(j==-1||p[i]==p[j])
{
i++;
j++;
NEXT[i] = j;
}
else
j = NEXT[j];
}
}
int kmp(int t[], int p[])
{
int i = 0, j = 0;
while(i<n&&j<m)
{
if(j==-1||t[i]==p[j])
i++, j++;
else
j = NEXT[j];
}
if(j>=m)
return i - m + 1;
else
return -1;
}
int main()
{
int T;
cin>>T;
while(T--)
{
cin>>n>>m;
for(int i=0;i<n;i++)
cin>>t[i];
for(int i=0;i<m;i++)
cin>>p[i];
if(n<m)
printf("-1\n");
else
{
getnext(p);
printf("%d\n", kmp(t, p));
}
}
return 0;
}