String,StringBuffer与StringBuilder的区别??

本文详细比较了Java中的String、StringBuffer和StringBuilder三种字符串类型的性能特点及适用场景,特别强调了线程安全性和内存效率。
String 字符串常量
StringBuffer 字符串变量(线程安全)
StringBuilder 字符串变量(非线程安全)

 简要的说, String 类型和 StringBuffer 类型的主要性能区别其实在于 String 是不可变的对象, 因此在每次对 String 类型进行改变的时候其实都等同于生成了一个新的 String 对象,然后将指针指向新的 String 对象,所以经常改变内容的字符串最好不要用 String ,因为每次生成对象都会对系统性能产生影响,特别当内存中无引用对象多了以后, JVM 的 GC 就会开始工作,那速度是一定会相当慢的。
 而如果是使用 StringBuffer 类则结果就不一样了,每次结果都会对 StringBuffer 对象本身进行操作,而不是生成新的对象,再改变对象引用。所以在一般情况下我们推荐使用 StringBuffer ,特别是字符串对象经常改变的情况下。而在某些特别情况下, String 对象的字符串拼接其实是被 JVM 解释成了 StringBuffer 对象的拼接,所以这些时候 String 对象的速度并不会比 StringBuffer 对象慢,而特别是以下的字符串对象生成中, String 效率是远要比 StringBuffer 快的:
 String S1 = “This is only a” + “ simple” + “ test”;
 StringBuffer Sb = new StringBuilder(“This is only a”).append(“ simple”).append(“ test”);
 你会很惊讶的发现,生成 String S1 对象的速度简直太快了,而这个时候 StringBuffer 居然速度上根本一点都不占优势。其实这是 JVM 的一个把戏,在 JVM 眼里,这个
 String S1 = “This is only a” + “ simple” + “test”; 其实就是:
 String S1 = “This is only a simple test”; 所以当然不需要太多的时间了。但大家这里要注意的是,如果你的字符串是来自另外的 String 对象的话,速度就没那么快了,譬如:
String S2 = “This is only a”;
String S3 = “ simple”;
String S4 = “ test”;
String S1 = S2 +S3 + S4;
这时候 JVM 会规规矩矩的按照原来的方式去做

在大部分情况下 StringBuffer > String
StringBuffer
Java.lang.StringBuffer线程安全的可变字符序列。一个类似于 String 的字符串缓冲区,但不能修改。虽然在任意时间点上它都包含某种特定的字符序列,但通过某些方法调用可以改变该序列的长度和内容。
可将字符串缓冲区安全地用于多个线程。可以在必要时对这些方法进行同步,因此任意特定实例上的所有操作就好像是以串行顺序发生的,该顺序与所涉及的每个线程进行的方法调用顺序一致。
StringBuffer 上的主要操作是 append 和 insert 方法,可重载这些方法,以接受任意类型的数据。每个方法都能有效地将给定的数据转换成字符串,然后将该字符串的字符追加或插入到字符串缓冲区中。append 方法始终将这些字符添加到缓冲区的末端;而 insert 方法则在指定的点添加字符。
例如,如果 z 引用一个当前内容是“start”的字符串缓冲区对象,则此方法调用 z.append("le") 会使字符串缓冲区包含“startle”,而 z.insert(4, "le") 将更改字符串缓冲区,使之包含“starlet”。
在大部分情况下 StringBuilder > StringBuffer
java.lang.StringBuilde
java.lang.StringBuilder一个可变的字符序列是5.0新增的。此类提供一个与 StringBuffer 兼容的 API,但不保证同步。该类被设计用作 StringBuffer 的一个简易替换,用在字符串缓冲区被单个线程使用的时候(这种情况很普遍)。如果可能,建议优先采用该类,因为在大多数实现中,它比 StringBuffer 要快。两者的方法基本相同。
 
内容概要:本文介绍了基于Koopman算子理论的模型预测控制(MPC)方法,用于非线性受控动力系统的状态估计预测。通过将非线性系统近似为线性系统,利用数据驱动的方式构建Koopman观测器,实现对系统动态行为的有效建模预测,并结合Matlab代码实现具体仿真案例,展示了该方法在处理复杂非线性系统中的可行性优势。文中强调了状态估计在控制系统中的关键作用,特别是面对不确定性因素时,Koopman-MPC框架能够提供更为精确的预测性能。; 适合人群:具备一定控制理论基础和Matlab编程能力的研【状态估计】非线性受控动力系统的线性预测器——Koopman模型预测MPC(Matlab代码实现)究生、科研人员及从事自动化、电气工程、机械电子等相关领域的工程师;熟悉非线性系统建模控制、对先进控制算法如MPC、状态估计感兴趣的技术人员。; 使用场景及目标:①应用于非线性系统的建模预测控制设计,如机器人、航空航天、能源系统等领域;②用于提升含不确定性因素的动力系统状态估计精度;③为研究数据驱动型控制方法提供可复现的Matlab实现方案,促进理论实际结合。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注Koopman算子的构造、观测器设计及MPC优化求解部分,同时可参考文中提及的其他相关技术(如卡尔曼滤波、深度学习等)进行横向对比研究,以深化对该方法优势局限性的认识。
内容概要:本文研究了基于物理信息神经网络(PINN)求解二阶常微分方程(ODE)边值问题的方法,并提供了完整的Matlab代码实现。文章通过将微分方程的物理规律嵌入神经网络损失函数中,利用神经网络的逼近能力求解边值问题,避免传统数值方法在网格划分和迭代收敛方面的局限性。文中详细介绍了PINN的基本原理、网络结构设计、损失函数构建及训练流程,并以典型二阶ODE边值问题为例进行仿真验证,展示了该方法的有效性和精度。此外,文档还附带多个相关科研方向的Matlab案例资源链接,涵盖状态估计、优PINN物理信息神经网络用于求解二阶常微分方程(ODE)的边值问题研究(Matlab代码实现)化调度、机器学习、信号处理等多个领域,突出其在科学研究中的实际应用价值。; 适合人群:具备一定数学基础和Matlab编程能力的理工科研究生、科研人员及从事科学计算、工程仿真等相关工作的技术人员。; 使用场景及目标:①用于求解传统数值方法难以处理的复杂或高维微分方程问题;②为科研工作者提供PINN方法的入门实践路径,推动其在物理建模、工程仿真等领域中的创新应用;③结合所提供的丰富资源拓展至电力系统、故障诊断、优化调度等交叉学科研究。; 阅读建议:建议读者结合文中的Matlab代码逐行理解PINN实现机制,动手复现并尝试修改方程形式边界条件以加深理解,同时可参考附带资源扩展应用场景,提升科研效率创新能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值