在本文中,我们对ICCV2021的最新论文进行了分类汇总,按研究方向整理。包含目标检测、图像分割、目标跟踪、医学影像、3D、模型压缩、图像处理、姿态估计、文本检测等多个方向,同时,我们将对优秀论文解读报道和技术直播,欢迎大家关注~
由于编辑器的限制,最新版本的论文汇总请大家前往我们的Github:#ICCV2021/ICCV2019/ICCV2017(Paper/Code/Project/Paper reading
检测
图像目标检测(2D Object Detection)
[5] Active Learning for Deep Object Detection via Probabilistic Modeling
paper:https://arxiv.org/abs/2103.16130
[4] Detecting Invisible People
paper:https://arxiv.org/abs/2012.08419
project:https://www.cs.cmu.edu/~tkhurana/invisible.htm
video:https://youtu.be/StEfnshXrCE
[3] Conditional Variational Capsule Network for Open Set Recognition
paper:https://arxiv.org/abs/2104.09159
code:https://github.com/guglielmocamporese/cvaecaposr
[2] MDETR : Modulated Detection for End-to-End Multi-Modal Understanding(Oral)
paper:https://arxiv.org/pdf/2104.12763
code:https://github.com/ashkamath/mdetr
project:https://ashkamath.github.io/mdetr_page/
colab:https://colab.research.google.com/github/ashkamath/mdetr/blob/colab/notebooks/MDETR_demo.ipynb
[1] DetCo: Unsupervised Contrastive Learning for Object Detection
paper:https://arxiv.org/abs/2102.04803
code:https://github.com/xieenze/DetCo
分割(Segmentation)
图像分割(Image Segmentation)
[2] Labels4Free: Unsupervised Segmentation using StyleGAN
paper:https://arxiv.org/abs/2103.14968
code:https://rameenabdal.github.io/Labels4Free
project:https://rameenabdal.github.io/Labels4Free/
[1] Mining Latent Classes for Few-shot Segmentation(Oral)
paper:https://arxiv.org/abs/2103.15402
code:https://github.com/LiheYoung/MiningFSS

本文汇总了ICCV2021的最新研究,涵盖目标检测、图像分割、目标跟踪等多个方向。亮点包括使用概率建模的深度目标检测、无监督分割技术、Transformer在视觉任务中的应用、3D形状识别及姿态估计等。此外,还探讨了数据增强、对比学习、主动学习等领域的创新方法。
最低0.47元/天 解锁文章
3621

被折叠的 条评论
为什么被折叠?



