使用 ChatGPT 实现通用人工智能,思路打开了。
当前,AI 模型虽然已经涉及非常广泛的应用领域,但大部分 AI 模型是为特定任务而设计的,它们往往需要大量的人力来完成正确的模型架构、优化算法和超参数。ChatGPT、GPT-4 爆火之后,人们看到了大型语言模型(LLM)在文本理解、生成、互动、推理等方面的巨大潜力。一些研究者尝试利用 LLM 探索通往通用人工智能(AGI)的新道路。
近期,来自德克萨斯州大学奥斯汀分校的研究者提出一种新思路 —— 开发任务导向型 prompt,利用 LLM 实现训练 pipeline 的自动化,并基于此思路推出新型系统 AutoML-GPT。

论文地址:
https://papers.labml.ai/paper/35151be0eb2011edb95839eec3084ddd
AutoML-GPT 使用 GPT 作为各种 AI 模型之间的桥梁,并用优化过的超参数来动态训练模型。AutoML-GPT 动态地接收来自 Model Card [Mitchell et al., 2019] 和 Data Card [Gebru et al., 2021] 的用户请求,并组成相应的 prompt 段落。最后,AutoML-GPT 借助该 prompt 段落自动进行多项实验,包括处理数据、构建模型架构、调整超参数和预测训练日志。
AutoML-GPT 通过最大限度地利用其强大的 NLP 能力和现有的人工智能模型,解决了各种测试和数据集中复杂的 AI 任务。大量实验和消融研究表明,AutoML-GPT 对许多人工智能任务(包括 CV 任务、NLP 任务)是通用的、有效的。
AutoML-

研究者提出AutoML-GPT,一个利用GPT作为控制器,结合多个模型协作完成AI任务的系统。该系统通过任务导向型prompt自动化训练pipeline,处理数据、构建模型、调整超参数,适用于CV和NLP等任务,展现出通用性和有效性。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



