[LeetCode 809] Expressive Words

博客围绕LeetCode中字符串匹配问题展开,给定字符串S和查询单词列表,判断单词是否可通过特定扩展操作与S相等。分析指出不能简单压缩比较,需用双指针遍历,比较重复字符长度,还给出C++代码及运行效率。

Sometimes people repeat letters to represent extra feeling, such as "hello" -> "heeellooo", "hi" -> "hiiii".  In these strings like "heeellooo", we have groups of adjacent letters that are all the same:  "h", "eee", "ll", "ooo".

For some given string S, a query word is stretchy if it can be made to be equal to S by any number of applications of the following extension operation: choose a group consisting of characters c, and add some number of characters c to the group so that the size of the group is 3 or more.

For example, starting with "hello", we could do an extension on the group "o" to get "hellooo", but we cannot get "helloo" since the group "oo" has size less than 3.  Also, we could do another extension like "ll" -> "lllll" to get "helllllooo".  If S = "helllllooo", then the query word "hello" would be stretchy because of these two extension operations: query = "hello" -> "hellooo" -> "helllllooo" = S.

Given a list of query words, return the number of words that are stretchy. 

Example:
Input: 
S = "heeellooo"
words = ["hello", "hi", "helo"]
Output: 1
Explanation: 
We can extend "e" and "o" in the word "hello" to get "heeellooo".
We can't extend "helo" to get "heeellooo" because the group "ll" is not size 3 or more.

Notes:

  • 0 <= len(S) <= 100.
  • 0 <= len(words) <= 100.
  • 0 <= len(words[i]) <= 100.
  • S and all words in words consist only of lowercase letters

分析

这道题好像是面试中的高频题目,很容易由于边界条件考虑的不全导致写错。刚开始的时候考虑是否可以对S和word进行压缩比较压缩后的字符串是否相同,但是这样的解法行不通,因为word可能重复字符的长度大于S的重复子串。

所以只能一一比较S和word,比较的方法是使用两个指针遍历S和word,每当到新的字符时,向后寻找重复的字符的长度分别获取重复字符的长度为sl和wl,要求sl == wl || (sl != wl && sl >= 3)。一直寻找到字符串的末尾,为了方便查找,可以在字符串的末尾添加‘#’作为结束符,方便查找。 

Code

class Solution {
public:
    int expressiveWords(string S, vector<string>& words) {
        int res = 0;
        if (S.size() == 0)
            return 0;
        S.push_back('#');
        int sLen = S.size();
        for (int i = 0; i < words.size(); i ++)
        {
            words[i].push_back('#');
            int wLen = words[i].size();
            if (wLen > sLen || words[i][0] != S[0])
                continue;
            int sp = 0;
            int sc = 0;
            int wp = 0;
            int wc = 0;
            while (sp < sLen && wp < wLen)
            {

                while (sp < sLen-1)
                {
                    if (S[sp+1] != S[sp])
                        break;
                    sp ++;
                }
                while (wp < wLen)
                {
                    if (words[i][wp+1] != words[i][wp])
                        break;
                    wp ++;
                }
            
                if (wp - wc > sp -sc || (sp -sc > wp -wc && sp -sc + 1 < 3))
                    break;
                wp ++;
                sp ++;
                wc = wp;
                sc = sp;
            }
            cout << endl;
            if (wp == wLen && sp == sLen)
                res ++;
        }
        return res;
    }
};

运行效率

Runtime: 8 ms, faster than 93.08% of C++ online submissions for Expressive Words.

Memory Usage: 9.4 MB, less than 54.30% of C++ online submissions forExpressive Words.

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值