[LeetCode 659] Split Array into Consecutive Subsequences

探讨如何将升序整数数组拆分为包含至少3个连续整数的子序列,提出两种解决方案并分析其时间复杂度,包括一种超时的二维数组方法和一种通过map优化的高效方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You are given an integer array sorted in ascending order (may contain duplicates), you need to split them into several subsequences, where each subsequences consist of at least 3 consecutive integers. Return whether you can make such a split.

Example 1:

Input: [1,2,3,3,4,5]
Output: True
Explanation:
You can split them into two consecutive subsequences : 
1, 2, 3
3, 4, 5

Example 2:

Input: [1,2,3,3,4,4,5,5]
Output: True
Explanation:
You can split them into two consecutive subsequences : 
1, 2, 3, 4, 5
3, 4, 5

Example 3:

Input: [1,2,3,4,4,5]
Output: False

Note:

  1. The length of the input is in range of [1, 10000]

 

分析

这一题目还是挺新颖的,我第一时间也没有想到能够在时间复杂度内的解法。

先说一下最初想到的解法,我们使用二维数组记录所有的subsequences。遍历nums,每一个数nums[i]都在二维数组中寻找可以append的最短的数组,如果找不到,就以这个数为开头新增一个数组。

例如:1,2,3,3,4,5

[1]->[1,2]->[1,2,3]->[1,2,3] -> [1,2,3] -> [1,2,3]

                               [3]           [3,4]         [3,4,5]

这种解法会超时,因为每次我们都需要寻找最短的可用数组,最差条件下可能会有O(n*n)的复杂度,所以会超时。

 

在网上看到了其他人的解法,其实我们不必使用二维数组记录所有的subsquence,只需要使用map记录每一个subsquence最后一位数,即可。但是在每一次新起一个开头时,例如上个例子中的nums[4],都需要直接判断之后是否有nums[4] + 1, nums[4] + 2存在。如果存在就直接将这三个数字组成一个新的数组。

 

Code

超时的解法

class Solution {
public:
    bool isPossible(vector<int>& nums) {
        vector<vector<int>> subs;
        int length = nums.size();
        if (length < 3)
            return false;
        
        subs.push_back(vector<int>(1, nums[0]));
        for (int i = 1; i < length; i ++)
        {
            int minLen = INT_MAX;
            int index = -1;
            for (int j = 0; j < subs.size(); j ++)
            {
                if (nums[i] == subs[j].back() + 1)
                {
                    if (subs[j].size() < minLen)
                    {
                        index = j;
                        minLen = subs[j].size();
                    }
                }
            }
            if (index == -1)
            {
                subs.push_back(vector<int>(1, nums[i]));
                continue;
            }
            else
            {
                subs[index].push_back(nums[i]);
            }
        }
        
        for (int i = 0; i < subs.size(); i ++)
        {
            if (subs[i].size() < 3)
                return false;
        }
        return true;
    }
};

Accept解法

class Solution {
public:
    bool isPossible(vector<int>& nums) {
        map<int, int> freq;
        map<int, int> q;
        
        int length = nums.size();
        for (int i = 0; i < length; i ++)
        {
            if (freq.find(nums[i]) == freq.end())
                freq[nums[i]] = 1;
            else
                freq[nums[i]] ++;
        }
        
        for (int i = 0; i < nums.size(); i ++)
        {
            int current = nums[i];
            if (freq[current] == 0)
            {
                continue;
            }
            if (q.find(current) == q.end() || q[current] == 0)
            {
                if (freq.find(current + 1) == freq.end() ||
                    freq.find(current + 2) == freq.end() ||
                    freq[current + 1] == 0 ||
                    freq[current + 2] == 0)
                {
                    return false;
                }
                if (q.find(current + 3) == q.end())
                    q.insert(make_pair(current + 3, 1));
                else
                    q[current + 3] ++;
                freq[current] --;
                freq[current + 1] --;
                freq[current + 2] --;
            }
            else
            {
                freq[current] --;
                q[current] --;
                if (q.find(current + 1) == q.end())
                    q[current + 1] = 1;
                else
                    q[current + 1] ++;
            }
        }
        
        return true;
    }
};

运行效率

Runtime: 188 ms, faster than 20.00% of C++ online submissions for Split Array into Consecutive Subsequences.

Memory Usage: 18.1 MB, less than 93.55% of C++ online submissions forSplit Array into Consecutive Subsequences.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值