Codeforces Round #575 (Div. 3) D1&D2(DP)

本文介绍了一个算法问题,目标是在给定字符串中找到长度为k的子串,使其尽可能地匹配无限重复的RGBRGB...字符串,通过初始化三种不同的无限字符串并采用类似于尺取法的策略,文章详细阐述了如何高效地解决此问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

RGB Substring

time limit per test: 2 seconds    memory limit per test: 256 megabytes

input: standard input   output: standard output

The only difference between easy and hard versions is the size of the input.

You are given a string s consisting of n characters, each character is 'R', 'G' or 'B'.

You are also given an integer k. Your task is to change the minimum number of characters in the initial string s so that after the changes there will be a string of length k that is a substring of s, and is also a substring of the infinite string "RGBRGBRGB ...".

A string a is a substring of string b if there exists a positive integer i such that a1=bi, a2=bi+1, a3=bi+2, ..., a|a|=bi+|a|−1. For example, strings "GBRG", "B", "BR" are substrings of the infinite string "RGBRGBRGB ..." while "GR", "RGR" and "GGG" are not.

You have to answer q independent queries.

Input

The first line of the input contains one integer q (1≤q≤2⋅105) — the number of queries. Then q queries follow.

The first line of the query contains two integers n and k (1≤k≤n≤2⋅10^5) — the length of the string s and the length of the substring.

The second line of the query contains a string s consisting of n characters 'R', 'G' and 'B'.

It is guaranteed that the sum of n over all queries does not exceed 2⋅105 (∑n≤2⋅10^5).

Output

For each query print one integer — the minimum number of characters you need to change in the initial string s so that after changing there will be a substring of length k in s that is also a substring of the infinite string "RGBRGBRGB ...".

Example

Input

3
5 2
BGGGG
5 3
RBRGR
5 5
BBBRR

Output

1
0
3

Note

In the first example, you can change the first character to 'R' and obtain the substring "RG", or change the second character to 'R' and obtain "BR", or change the third, fourth or fifth character to 'B' and obtain "GB".

In the second example, the substring is "BRG".

题目大意:

给定q个查询,每个查询包含两个数字n,k和一个字符串s,求在s中得到一个长度为k的子串,同时这个子串也是一个infinite字符串"RGBRGBRGBRGB..."的子串,最少需要改动的字符数。

题解:

做法类似尺取法,首先初始化三个infinite字符串,"RGBRGB...","GBRGBR...","BRGBRG...",因为infinite字符串的循环节是3,因此让字符串s分别和这三个infinite字符串比较便可以得到改变任意子串的代价。

以长度为k从左到右依次处理,每次取四个字符相同位置的四个长度为k的子串计算代价,保留这个过程中的最小值便得到答案。由于这个过程是递推的,对于每组查询只需要将各个字符串扫一遍即可,因此复杂度是 O(n)。

代码如下:

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn = 2e5 + 5;
char a[maxn];
char x[maxn], y[maxn], z[maxn];
int main()
{
    int q;
    int n,k;
    int pos1, pos2, pos3;
    pos1 = 0;
    pos2 = 1;
    pos3 = 2;
    char sub[] = "RGB";
    for(int i = 0;i < maxn; ++i)
    {
        x[i] = sub[pos1];
        y[i] = sub[pos2];
        z[i] = sub[pos3];
        pos1 = (pos1 + 1) % 3;
        pos2 = (pos2 + 1) % 3;
        pos3 = (pos3 + 1) % 3;
    }
    scanf("%d", &q);
    while(q--)
    {
        scanf("%d %d", &n, &k);
        scanf("%s", a);
        getchar();
        int ans = maxn;
        int ans1 = 0;
        int ans2 = 0;
        int ans3 = 0;
        for(int i = 0;i  < k; ++i)
        {
            if(a[i] != x[i])
            {
                ans1 += 1;
            }
            if(a[i] != y[i])
            {
                ans2 += 1;
            }
            if(a[i] != z[i])
            {
                ans3 += 1;
            }
        }
        ans = min(ans, min(ans1, min(ans2, ans3)));
        for(int i  = k;i < n; ++i)
        {
            ans1 -= a[i - k] == x[i - k] ? 0 : 1;
            ans2 -= a[i - k] == y[i - k] ? 0 : 1;
            ans3 -= a[i - k] == z[i - k] ? 0 : 1;
            if(a[i] != x[i])
            {
                ans1 += 1;
            }
            if(a[i] != y[i])
            {
                ans2 += 1;
            }
            if(a[i] != z[i])
            {
                ans3 += 1;
            }
            ans = min(ans, min(ans1, min(ans2, ans3)));
        }
        printf("%d\n", ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值