Description
Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 1 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
BL == N (mod P)
Input
Read several lines of input, each containing P,B,N separated by a space.
Output
For each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
Sample Input
5 2 1
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
Sample Output
0
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
462803587
Hint
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(P-1) == 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(-m) == B(P-1-m) (mod P) .
题目大意:计算离散对数,模板题,就是练练板子。。。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int MOD = 76543;
int hs[MOD],head[MOD],next[MOD],id[MOD],top;
void insert(int x,int y)
{
int k = x % MOD;
hs[top] = x,id[top] = y,next[top] = head[k],head[k] = top++;
}
int Find(int x)
{
int k = x % MOD;
for(int i = head[k];i != -1;i = next[i])
{
if(hs[i] == x) return id[i];
}
return -1;
}
int BSGS(int a,int b,int n)
{
memset(head,-1,sizeof(head));
top = 1;
if(b == 1) return 0;
int m = sqrt(n * 1.0),j;
ll x = 1,p = 1;
for(int i = 0;i < m; ++i, p = p * a % n) insert(p * b % n,i);
for(ll i = m;;i += m)
{
if((j = Find(x = x * p % n)) != -1) return i - j;
if(i > n) break;
}
return -1;
}
int main()
{
int p,b,n;
while(scanf("%d %d %d",&p,&b,&n) != EOF)
{
int ans = BSGS(b,n,p);
if(ans == -1) printf("no solution\n");
else printf("%d\n",ans);
}
return 0;
}