Benelux Algorithm Programming Contest 2014 Final I Interesting Integers(扩展欧里几得)

Interesting Integers

问题分析

我们稍微列一下式子就可以发现
aF(k1)+bF(k2)=n a F ( k − 1 ) + b F ( k − 2 ) = n
因此,最笨的办法就是直接枚举a和b,这里 n n 最大只有1e9,所以可以刚好卡过,但是不要傻傻的枚举,需要变换一下去枚举,去掉一层 for f o r

#include<iostream>
#include<algorithm>
const int maxn=1e7; 
using namespace std;
long f[50];
int main(){
    int t,n;
    f[1] = f[2] = 1;
    for(int i = 3; ; ++i){
        f[i] = f[i-1]+f[i-2];
        if(f[i]>=(1e9+1)){
            break;
        }
    }
    cin>>t;
    while(t--)
    {
        scanf("%d",&n);
        int flag = 0;
        for(int b = 1; b <= 1000000001; ++b){
            for(int i = 2; i <= 45; ++i){
                if(n<b*f[i]) break;
                long a = (n-f[i]*b)/f[i-1]; 
                if(a*f[i-1]+f[i]*b==n&&a>0&&a<=b){
                    printf("%d %d\n",a,b);
                    flag = 1;
                    break;
                }
            }
            if(flag==1)
            break;
        }

    } 
    return 0;
}

但是仔细看一下,泥萌木有发现这就是扩展欧里几得求最小的正整数 a,b a , b
首先 exgecd e x g e c d 求出一组解,然后通过这组解去求最小正整数解。

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;

void exgcd(LL a, LL b, LL &d, LL &x, LL &y)
{
    if(!b) { d = a; x = 1; y = 0; }
    else{
        exgcd(b,a%b,d,y,x); y -= x*(a/b);
    }
}

int f[46],t;

int main()
{
    f[2] = f[1] = 1;
    for(int i = 3; i < 46; ++i){
        f[i] = f[i-1]+f[i-2];
    }
    cin>>t;
    while(t--)
    {
        LL n;
        cin>>n;
        LL A = 1e9,B = 1e9;
        for(int i = 3; i <= 45; ++i){
            LL a = f[i-2], b = f[i-1], d, x, y;
            exgcd(a,b,d,x,y);
            if(n%d) continue;//判断是否有解
            x *= n, y *= n;
            a /= d, b /= d;
            LL k = (y-x)/(a+b);//关键
            x += k*b, y -= k*a;
            if(x>y){
                y += a;
                x -= b;
            }
            if(x<=0||y<=0)
                continue;
            if(x<=y&&x<=A&&y<=B){
                A = x;
                B = y;
            }
        }
        cout<<A<<' '<<B<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值