把一列长为 n n n 的字符串分成若干个区,使 c o u n t ( ′ G ′ ) ≥ c o u n t ( ′ H ′ ) count('G') \ge count('H') count(′G′)≥count(′H′) 的区的数量最少。
化为正负一,前缀和画一下图,考虑分类讨论转移:
如果在区间内能转移到的点的高度都不高于当前点,就取区间内最低的那个点;
否则转移到高度恰好高 1 的区间内最靠右的点。
显然可以单调队列优化(移动窗口),根据用不用可能T或者不T(
用单调队列的话就没办法旋转跳跃闭着眼转移了,得滴批。
能过(USACO限定)
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<ctime>
#include<cctype>
#include<iostream>
#include<algorithm>
using namespace std;
int n, k;
const int MAXN = 300005;
const int MAXST = 20;
const int INF = 0x3f3f3f3f;
bool lst[MAXN];
int sum[MAXN];
string str;
pair<int,int> Seg[4*MAXN];
void SegBuild(int Pos, int L, int R)
{
if (L==R)
{
Seg[Pos] = make_pair(sum[L],L);
return;
}
int Mid = L + R >> 1;
SegBuild(Pos<<1,L,Mid);
SegBuild(Pos<<1|1,Mid+1,R);
Seg[Pos] = (Seg[Pos<<1].first<Seg[Pos<<1|1].first)?Seg[Pos<<1]:Seg[Pos<<1|1];
}
pair<int,int> Query(int Pos, int L, int R, int qL, int qR)
{
if (R < qL || L > qR) return make_pair(INF,-1);
if (L >= qL && R <= qR)
{
return Seg[Pos];
}
int Mid = L + R >> 1;
pair<int,int> A1 = Query(Pos<<1,L,Mid,qL,qR);
pair<int,int> A2 = Query(Pos<<1|1,Mid+1,R,qL,qR);
return (A1.first<A2.first)?A1:A2;
}
int main()
{
// freopen("redistricting.in", "r", stdin);
// freopen("redistricting.out", "w", stdout);
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> k >> str;
for (int i = 0; i < n; ++i)
{
lst[i + 1] = (str[i] == 'H');
sum[i + 1] = sum[i] + (lst[i + 1] ? 1 : -1);
}
SegBuild(1, 1, n);
int pos = 0;
int ans = 0;
while (pos < n)
{
int trans = -1;
for (int i = min(n,pos+k); i >= pos+1; --i)
{
if (sum[i] == sum[pos] + 1)
{
trans = i;
break;
}
}
if (trans != -1)
{
pos = trans;
}
else
{
pos = Query(1, 1, n, pos+1, min(n,pos+k)).second;
++ans;
}
}
printf("%d", ans);
return 0;
}
单调队列(初始化比较多,小心
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<ctime>
#include<cctype>
#include<iostream>
#include<deque>
#include<algorithm>
using namespace std;
int n, k;
const int MAXN = 300005;
const int MAXST = 20;
const int INF = 0x3f3f3f3f;
bool lst[MAXN];
int sum[MAXN];
int rit[MAXN];
int dp[MAXN];
string str;
int lack = INF;
deque<int> Q;
#define UPDATE_MIN(a,b) a=min(a,b)
int main()
{
freopen("redistricting.in", "r", stdin);
freopen("redistricting.out", "w", stdout);
//INPUT
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
cin >> n >> k >> str;
for (int i = 0; i < n; ++i)
{
lst[i + 1] = (str[i] == 'H');
sum[i + 1] = sum[i] + (lst[i + 1] ? 1 : -1);
lack = min(lack, sum[i+1]);
}
//INIT_ETC
lack = -lack+1;
int ans = 0;
//INIT_DP
memset(dp, 0x3f, sizeof(dp));
for (int i = 1; i <= k; ++i) dp[i] = 1;
//INIT_DEQUE
for (int i = 1; i <= k; ++i)
{
while (!Q.empty() && sum[Q.back()] >= sum[i]) Q.pop_back();
Q.push_back(i);
rit[lack+sum[i]] = i;
}
if (rit[lack+1]) dp[rit[lack+1]] = 0;
for (int gg, popo, i = 1; i < n; ++i)
{
//Delete
while(!Q.empty() && Q.front() <= i) Q.pop_front();
gg = i+k;
//Insert
if (gg <= n)
{
while (!Q.empty() && sum[Q.back()] >= sum[gg]) Q.pop_back();
Q.push_back(gg);
rit[lack+sum[gg]] = gg;
}
popo = lack+sum[i]+1;
//Etc.
if (rit[popo])
{
UPDATE_MIN(dp[rit[popo]], dp[i]);
}
UPDATE_MIN(dp[min(n,gg)], dp[i] + 1);
UPDATE_MIN(dp[Q.front()], dp[i] + 1);
}
printf("%d", dp[n]);
return 0;
}