GAN网络的发展及应用

本文介绍了生成对抗网络(GAN)相关内容,包括无条件生成模型、无条件对偶生成模型、条件生成模型,还列举了GAN在人脸生成与转换、风格迁移、超分辨率等多个领域的应用,涉及多篇相关研究文献。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Thanks for participation of Dr Chang Xu and assistant professor Ran He from The University of Sydney and National Laboratory of Pattern Recognition separately.

Unconditional Generative Models

Generative Adversarial Network [Goodfellow et al, 2014]
Variational Autoencoder [Kingma et al, 2014]

Autoregressive Models (PixelRNN, PixelCNN) [Oord et al, 2016]
Reversible Flow [Dinh et al, 2014] 


Unconditional Dual Generative Models

CoGAN [Liu et al, 2016] MERL
DVG [Fu et al, 2019] NLPR

Conditional Generative Models

Class-conditional

 

Conditional Image-to-image Translation

 

Conditional Image/Video-to-video Generation

Applications

`face generation and translation   

             inpainting/expression/rotation/aging/attribute

`style transfer

`super resolution

`text to image

`audio/video generation

`pose-based human image generation

A Siarohin, E Sangineto, Deformable GANs for Pose-based Human Image Generation CVPR2018.

`Human Motion Transfer

C Chan, S Ginosar, T Zhou, AA Efros, Everybody Dance Now, Siggraph 2018.

`Adversarial Domain Adaptation

Unsupervised domain adaptation by backpropagationICML 2015

Multiple source domain adaptation. [NeurIPS 2018]

Structured domain adaptation (e.g. segmentation). [CVPR 2018]

Conditional domain discriminator. [NeurIPS 2018]

Domain classifier →Task-specific classifier. [CVPR 2018]

Feature augmentation via another GANs. [CVPR 2018]

`Adversarial Examples

Goodfellow et al., 2015; Carlini and Wagner, 2017; Liu et al., 2017

`Visualization of GANs
 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值