Children’s Queue

本文介绍了一个有趣的算法问题——儿童排队问题,旨在找出符合特定条件的队列总数。通过动态规划的方法,给出了针对该问题的有效解决方案,并提供了完整的C语言实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem  Link:http://acm.hdu.edu.cn/showproblem.php?pid=1297



Children’s Queue

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10591    Accepted Submission(s): 3407


Problem Description
There are many students in PHT School. One day, the headmaster whose name is PigHeader wanted all students stand in a line. He prescribed that girl can not be in single. In other words, either no girl in the queue or more than one girl stands side by side. The case n=4 (n is the number of children) is like
FFFF, FFFM, MFFF, FFMM, MFFM, MMFF, MMMM
Here F stands for a girl and M stands for a boy. The total number of queue satisfied the headmaster’s needs is 7. Can you make a program to find the total number of queue with n children?
 

Input
There are multiple cases in this problem and ended by the EOF. In each case, there is only one integer n means the number of children (1<=n<=1000)
 

Output
For each test case, there is only one integer means the number of queue satisfied the headmaster’s needs.
 

Sample Input
  
  
1 2 3
 

Sample Output
  
  
1 2 4
 

Author
SmallBeer (CML)
 

Source

code:


#include<stdio.h>
int f[1001][246];
void init()
{
int i,j,k,g;
k=1;
f[1][1]=1;f[1][0]=1;//f[i][0]表示第i个数位数
f[2][1]=2;f[2][0]=1;
f[3][1]=4;f[3][0]=1;
f[4][1]=7;f[4][0]=1;
for(i=5;i<=1000;i++)
{
g=0;
for(j=1;j<=k;j++)
{
 f[i][j]=f[i-1][j]+f[i-2][j]+f[i-4][j]+g;
 g=f[i][j]/10;
 f[i][j]%=10;
 f[i][j+1]=g;
}
while(f[i][j]>0)
{
k++;
f[i][j+1]=f[i][j]/10;
f[i][j]%=10;
j++;
}
f[i][0]=k;
}
}
int main()
{
int n,i;
init();
//printf("%d\n",f[1000][0]);==245 先开较大的数组在输出最大的位数 调整
while(scanf("%d",&n)!=EOF)
{
for(i=f[n][0];i>=1;i--)
printf("%d",f[n][i]);
printf("\n");
}
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林下的码路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值