概率论札记 - 2 - 用贝叶斯定理来讨论“医疗诊断的可靠性到底有多少”

医学诊断的贝叶斯定理分析:误诊率与真实患病概率
本文通过一道概率论习题探讨了在艾滋病筛查中,即使测试准确率高达99%,若艾滋病患病率仅为万分之一,当测试结果为阳性时,实际患病概率仅为约千分之二。贝叶斯定理揭示了误诊率与发病率对诊断可靠性的双重影响,强调了理解医学诊断概率的重要性。

只有愚蠢的人才会相信眼睛看到的。
——安·兰德

故事要从一道贝叶斯定理的简单习题讲起。大意是艾滋病患病率为万分之一,误诊率为5%,患有艾滋病者被诊断出来的概率为99%,请问在这样的设定下如果你被诊断为艾滋病阳性,那么你患艾滋病的概率是多少,原题如下——

Problem Denoted blood is screened for AIDS. Suppose the test has 99% accuracy, and that one in ten thousand people in your age group are HIV positive. The test has a 5% false positive rating, as well. Suppose the test screens you as positive. What is the probability you have AIDS? Is it 99%?

Solution: E_1=”test positive”, E_2=”test negative”. A_1=”You have AIDS”, A_2=”You don’t have AIDS”. Now we know P(E1|A1)=99%, we need to find P(A1|E1). Since “one in ten thousand people in your age group are HIV positive”, P(A1)=1/10000.”5% false positive rating” means P(E1|A2)=5%. By Bayes’ Theorem

P(A1|E1)==P(E1|A
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值