从本专栏开始,作者正式开始研究Python深度学习、神经网络及人工智能相关知识。前一篇文章介绍了什么是过拟合,并采用droput解决神经网络中过拟合的问题,以TensorFlow和sklearn的load_digits为案例讲解;本篇文章详细讲解了卷积神经网络CNN原理,并通过TensorFlow编写CNN实现了MNIST分类学习案例。本专栏主要结合作者之前的博客、AI经验和"莫烦大神"的视频介绍,后面随着深入会讲解更多的Python人工智能案例及应用。
基础性文章,希望对您有所帮助,如果文章中存在错误或不足之处,还请海涵~作者作为人工智能的菜鸟,希望大家能与我在这一笔一划的博客中成长起来。写了这么多年博客,尝试第一个付费专栏,但更多博客尤其基础性文章,还是会继续免费分享,但该专栏也会用心撰写,望对得起读者,共勉!

代码下载地址(欢迎大家关注点赞):
同时推荐前面作者另外三个Python系列文章。从2014年开始,作者主要写了三个Python系列文章,分别是基础知识、网络爬虫和数据分析。2018年陆续增加了Python图像识别和Python人工智能专栏。
- Python基础知识系列:Pythonj基础知识学习与提升
- Python网络爬虫系列:Python爬虫之Selenium+Phantomjs+CasperJS
- Python数据分析系列:知识图谱、web数据挖掘及NLP
- Python图像识别系列:Python图像处理及图像识别
- Python人工智能系列:Python人工智能及知识图谱实战

本文详细讲解了卷积神经网络(CNN)的原理,包括卷积和池化操作,并通过TensorFlow实现了CNN在MNIST手写体识别中的应用,提高了预测准确率。此外,文章还介绍了神经网络的基础知识,以及如何在TensorFlow中构建CNN模型。
订阅专栏 解锁全文
1万+





