5049. Moving Stones Until Consecutive II

博客围绕无限数轴上的石子移动游戏展开。游戏规则是每次移动端点石子到非端点空位,直至石子连续排列。重点探讨游戏结束时的最小和最大移动次数,并给出多个示例,如输入[7,4,9],输出[1,2]等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

On an infinite number line, the position of the i-th stone is given by stones[i]. Call a stone an endpoint stone if it has the smallest or largest position.
Each turn, you pick up an endpoint stone and move it to an unoccupied position so that it is no longer an endpoint stone.
In particular, if the stones are at say, stones = [1,2,5], you cannot move the endpoint stone at position 5, since moving it to any position (such as 0, or 3) will still keep that stone as an endpoint stone.
The game ends when you cannot make any more moves, ie. the stones are in consecutive positions.
When the game ends, what is the minimum and maximum number of moves that you could have made? Return the answer as an length 2 array: answer = [minimum_moves, maximum_moves]
Example 1:

Input: [7,4,9]
Output: [1,2]
Explanation:
We can move 4 -> 8 for one move to finish the game.
Or, we can move 9 -> 5, 4 -> 6 for two moves to finish the game.

Example 2:

Input: [6,5,4,3,10]
Output: [2,3]
We can move 3 -> 8 then 10 -> 7 to finish the game.
Or, we can move 3 -> 7, 4 -> 8, 5 -> 9 to finish the game.
Notice we cannot move 10 -> 2 to finish the game, because that would be an illegal move.

Example 3:

Input: [100,101,104,102,103]
Output: [0,0]

Note:
  1. 3 <= stones.length <= 10^4
  2. 1 <= stones[i] <= 10^9
  3. stones[i] have distinct values.
class Solution {
public:
    static const int INF = 1e9 + 5;

    vector<int> numMovesStonesII(vector<int>& stones) {
        sort(stones.begin(), stones.end());
        int n = stones.size();
        int least = INF, most = -INF;

        for (int i = 0, j = 0; i < n; i++) {
            while (j + 1 < n && stones[j + 1] - stones[i] < n)
                j++;

            int now = n - (j - i + 1);

            if (j - i == n - 2 && stones[j] - stones[i] == j - i)
                now++;

            least = min(least, now);
        }

        most = max(stones[n - 1] - stones[1], stones[n - 2] - stones[0]) - (n - 2);
        return {least, most};
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值