转自 https://www.nowcoder.com/profile/1710251/codeBookDetail?submissionId=17436906
与 https://blog.youkuaiyun.com/gatieme/article/details/51915826
题目描述
给定一个数组和滑动窗口的大小,找出所有滑动窗口里数值的最大值。例如,如果输入数组{2,3,4,2,6,2,5,1}及滑动窗口的大小3,那么一共存在6个滑动窗口,他们的最大值分别为{4,4,6,6,6,5}; 针对数组{2,3,4,2,6,2,5,1}的滑动窗口有以下6个: {[2,3,4],2,6,2,5,1}, {2,[3,4,2],6,2,5,1}, {2,3,[4,2,6],2,5,1}, {2,3,4,[2,6,2],5,1}, {2,3,4,2,[6,2,5],1}, {2,3,4,2,6,[2,5,1]}。
时间复杂度O(N)
class Solution {
public:
vector<int> maxInWindows(const vector<int>& num, unsigned int size)
{
int nSize = num.size();
vector<int> res;
deque<int> s;
if(nSize == 0 || size == 0 || nSize < size)
return res;
for(int i = 0; i < nSize; i++)
{
while(s.size() && num[s.back()]<=num[i])//从后面依次弹出队列中比当前num值小的元素,同时也能保证队列首元素为当前窗口最大值下标
s.pop_back();
if(s.size() && i-s.front()+1>size)//当当前窗口移出队首元素所在的位置,即队首元素坐标对应的num不在窗口中,需要弹出
s.pop_front();
s.push_back(i);//把每次滑动的num下标加入队列
if(i + 1 >= size)//当滑动窗口首地址i大于等于size时才开始写入窗口最大值
res.push_back(num[s.front()]);
}
return res;
}
};
可以使用一个最大堆来保存size个数字,每次插入数字时只需要O(lgsize)的时间,从堆中取最大值只需要O(1)的时间。
对于队列每个元素构建一个节点(包含在队列中的位置),这些节点构成一个最大堆,因此插入和删除操作都要维护这个最大堆,时间复杂度都是O(LogN),取最大值的复杂度为 O(1)。
时间复杂度O(Nlog size)
class Solution
{
typedef pair<int,int> Pair;
public :
vector<int> maxInWindows(const vector<int> &num, unsigned int size)
{
vector<int> result;
priority_queue<Pair> Q;
if (num.size() < size || size < 1)
{
return result;
}
for (int i = 0; i < size-1; i++)
{
Q.push(Pair(num[i],i));
}
for (int i = size-1; i < num.size(); i++)
{
Q.push(Pair(num[i],i));
Pair p = Q.top();
while(p.second < i-(size-1)) {
Q.pop();
p = Q.top();
}
result.push_back(p.first);
}
// result.push_back(Q.top().first);
return result;
}
};
p存放当前堆的最大值 及其 在数组中的位置