最大流。关键在于建图。注意:每次打开猪笼,重新分配猪的数目后,所有已打开的猪笼要重新关闭。把每位顾客当成一个结点,若笼子k曾经被之前某个顾客a打开过,当前顾客b又能打开笼子k,则容量cap[a][b]=inf,若当前顾客是第一个打开笼子k的人,则cap[0][a]=pigNum[k],其中以0为源点,n+1为汇点,易知每个顾客到汇点的边的容量为顾客想要购买猪的数目。至此,构图完成。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <map>
#include <queue>
#define SZ(x) ((int)(x).size())
#define FOR(it,c) for ( __typeof((c).begin()) it=(c).begin(); it!=(c).end(); it++ )
using namespace std;
const int maxN=110;
const int maxM=1010;
const int inf=0xffffff;
int pigNum[maxM],flow[maxN][maxN],cap[maxN][maxN],p[maxN],a[maxN],n,m,opened[maxM];
bool vis[maxN];
int Edmonds_Karp(){
int ans=0;
while(true){
queue<int> q;
q.push(0);
memset(a,0,sizeof(a));
a[0]=inf;
while(!q.empty()){
int u=q.front();
q.pop();
for(int v=1;v<=n+1;v++)
if(!a[v]&&cap[u][v]>flow[u][v]){
a[v]=a[u]<cap[u][v]-flow[u][v]?a[u]:cap[u][v]-flow[u][v];
q.push(v);
p[v]=u;
}
}
if(!a[n+1]) return ans;
for(int u=n+1;u;u=p[u]){
flow[u][p[u]]-=a[n+1];
flow[p[u]][u]+=a[n+1];
}
ans+=a[n+1];
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
while(cin>>m>>n){
memset(opened,0,sizeof(opened));
memset(cap,0,sizeof(cap));
for(int i=1;i<=m;i++) cin>>pigNum[i];
for(int i=1;i<=n;i++){
int a,house,want;
cin>>a;
while(a--){
cin>>house;
if(opened[house]) cap[opened[house]][i]=inf;
else cap[opened[house]][i]+=pigNum[house];
opened[house]=i;
}
cin>>want;
cap[i][n+1]=want;
}
cout<<Edmonds_Karp()<<endl;
}
return 0;
}