EOJ1855 Expedition 贪心

贪心算法求解最少加油次数
本文介绍了一种利用贪心策略解决汽车行驶中如何选择加油站以达到最少加油次数的问题,并通过优先队列实现算法流程。

贪心策略:
要想使加油的次数最少我们肯定想要每一次加油的量尽可能的多,但是如果含油量最多的加油站在最后面,那么我们根本就到不了那个加油站。所以我们还要考虑能不能走到那个加油站。所以现在的贪心策略就变成了,在能到达的范围内,选择一个含油量最多的加油站加油。然后继续走,在能到达的范围内选择含油量最大的加油站加油........不断循环,就得到了答案。在取含油量最多的加油站的时候可以使用优先队列,取到了之后,就出队。代码如下:

#include <iostream>
#include <set>
#include <cstdlib>
#include <cstdio>
#include <utility>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
#include <map>
#define maxn 10000+5
#define INF 0x3fffff

using namespace std;

struct Fuelstop
{
    int dis;
    int fuel;
    bool operator < (const Fuelstop &b) const
    {
        return fuel < b.fuel;
    }
};

bool cmp(Fuelstop a, Fuelstop b)
{
    return a.dis < b.dis;
}

int main()
{

    //freopen("1.txt", "r", stdin);
    int n, i;
    Fuelstop a[maxn];
    scanf("%d", &n);
    for (int i = 0; i < n; i++)
        scanf("%d%d", &a[i].dis, &a[i].fuel);
    sort(a, a+n, cmp);
    int L, P;
    scanf("%d%d", &L, &P);
    priority_queue<Fuelstop> Q;
    int cur = P, cnt = 0;
    i = n - 1;
    while(cur < L)
    {
        for (; i>= 0 && (L - a[i].dis <= cur); i--)
            Q.push(a[i]);
        if (!Q.empty())
        {
            Fuelstop MAX = Q.top();
            Q.pop();
            cur += MAX.fuel;
            cnt++;
        }else {printf("-1\n"); break;}
    }
    if (cur >= L)
        printf("%d\n", cnt);
    return 0;
}



### EOJ2654 题目解析与解法建议 EOJ2654 是华东师范大学在线评测系统(EOJ)中的一道编程题目。根据EOJ系统的常见题型和风格,这类题目通常涉及基础的数据结构操作、算法实现或数学建模。虽然没有直接提及EOJ2654的具体题目内容,但可以从EOJ系统的典型题目特征出发,结合常见的编程题类型,给出可能的解题思路与实现方法。 #### 题目类型推测 EOJ系统中常见的题目包括但不限于: - 数值计算与数学建模 - 字符串处理与模式匹配 - 数据结构操作(如栈、队列、链表等) - 图论与搜索算法 - 动态规划与贪心策略 根据题目编号(2654)以及EOJ的出题规律,该题可能属于**中等难度**,可能涉及**数学建模**或**字符串处理**。 #### 示例解法思路(假设题目为字符串处理) 假设题目要求判断某个字符串是否为回文串(Palindrome),可以采用如下C++实现: ```cpp #include <iostream> #include <string> #include <algorithm> using namespace std; int main() { string s; cin >> s; string rev = s; reverse(rev.begin(), rev.end()); if (s == rev) { cout << "Yes" << endl; } else { cout << "No" << endl; } return 0; } ``` #### 示例解法思路(假设题目为数学建模) 若题目要求求解某个数列的第n项,例如斐波那契数列,可以使用递归或迭代方法。以下是迭代方法的实现: ```cpp #include <iostream> using namespace std; long long fib(int n) { long long a = 0, b = 1, c; if (n == 0) return a; for (int i = 2; i <= n; i++) { c = a + b; a = b; b = c; } return b; } int main() { int n; cin >> n; cout << fib(n) << endl; return 0; } ``` #### 注意事项 在EOJ系统中,需要注意以下几点以避免运行时错误或超时: 1. **输入输出效率**:对于大规模输入数据,建议使用`scanf`和`printf`代替`cin`和`cout`以提高效率[^1]。 2. **数据类型选择**:在涉及大数运算时,应使用`long long`等大整数类型以防止溢出[^4]。 3. **边界条件处理**:特别注意输入数据的边界情况,如最小值、最大值等。 4. **代码简洁性与可读性**:保持代码结构清晰,避免不必要的复杂逻辑,以便调试与优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值