inputpath outputpath

 

 

 

hourly job 周期生成outputpath,一个小时一个,

daily job 检查hourly job的outputpath,检查过去24小时内的每个路径,只有全部路径全部存在才会执行daily任务。

 

具体参考 https://github.com/yahoo/oozie/wiki/Oozie-Coord-Use-Cases

内容如下

Oozie Coord Use Cases

Jui-Chung Wu edited this page on 9 Aug 2014 ·  3 revisions

Coordinator Engine Use Cases

Here are some typical use cases for the Oozie Coordinator Engine.

  • You want to run your workflow once a day at 2PM (similar to a CRON).
  • You want to run your workflow every hour and you also want to wait for specific data feeds to be available on HDFS
  • You want to run a workflow that depends on other workflows.

Benefits

  • Easily define all your requirements for triggering your workflow in an XML file
  • Avoid running multiple crontabs to trigger your workflows.
  • Avoid writing custom scripts that poll HDFS to check for input data and trigger workflows.
  • Oozie is provided as a service by the Grid Operations Team. You do not need to install software to start using Oozie on the Grid.

A Simple Coordinator Job

If you want to trigger workflows based on time or availability of data, then you should use the Oozie Coordinator Engine.

The input to the Oozie Coordinator Engine is a Coordinator App.

A Coordinator App consists of 2 files. 1 coordinator.xml: Contains the definition for your Coordinator Job 1 coordinator.properties: Contains properties that you want to pass to your Coordinator Job

These files are used to create a Coordinator Job. A Coordinator Job is an instance of your Coordinator App. The Coordinator App is a template that is used to create Coordinator Jobs.

1) The coordinator app definition is defined in a file named coordinator.xml.

$ cat coordinator.xml
<coordinator-app name="MY_APP" frequency="60" start="2009-01-01T05:00Z" end="2009-01-01T06:00Z" timezone="UTC" xmlns="uri:oozie:coordinator:0.1"> <action> <workflow> <app-path>hdfs://localhost:9000/tmp/workflows</app-path> </workflow> </action> </coordinator-app>
  • This Coordinator Job is assigned the name !MY_APP.
    • It will run every 60 minutes.
    • It will start at 2009-01-01T05:00Z and end at 2009-01-01T06:00Z. (Refer here for more info on Data/Time Formatting).
    • Since the start and end times are 60 minutes apart, this job will run only once.
  • When this job is triggered, it will run this workflow: hdfs://localhost:9000/tmp/workflows/workflow.xml
    • Refer to the Oozie Docs for details on how to create an Oozie workflow.

2) The coordinator.properties file must contain a property that specifies the location of your coordinator.xml:

  • In this example, the file is located in this HDFS location: /tmp/coord/coordinator.xml
$ cat coordinator.properties
oozie.coord.application.path=hdfs://localhost:9000/tmp/coord

Triggering Coordinator Jobs Based On Time

  • You can define a Coordinator Job that runs repeatedly, similar to a CRON.
$ cat coordinator.xml
<coordinator-app name="MY_APP" frequency="60" start="2009-02-01T00:00Z" end="2009-02-02T00:00Z" timezone="UTC" xmlns="uri:oozie:coordinator:0.1"> <action> <workflow> <app-path>hdfs://localhost:9000/tmp/workflows</app-path> </workflow> </action> </coordinator-app>
  • This Coordinator Job will run every 60 minutes.
    • For jobs that run every 5 mins, set the frequency="5"
    • For jobs that run every hour, set the frequency="60"
    • For jobs that run every day, set the frequency="1440", or frequency="${coord:days(1)}"
    • For jobs that run every week, set the frequency="${coord:days(7)}"
    • For jobs that run every month, set the frequency="${coord:months(1)}"
  • It will start at 2009-02-01T00:00Z and end at 2009-02-02T00:00Z (24 hour duration).
  • Since the start and end times are 1 day apart, this job will run 24 times
    • It will run every hour for the duration of 1 day.

Using Variables In A Coordinator Job

  • An example of a Coordinator Job that uses variable parameters.
$ cat coordinator.xml
<coordinator-app name="MY_APP" frequency="${freq}" start="${startTime}" end="${endTime}" timezone="UTC" xmlns="uri:oozie:coordinator:0.1"> <action> <workflow> <app-path>${workflowPath}</app-path> <configuration> <property> <name>start_date</name> <value>${startTime}</value> </property> </configuration> </workflow> </action> </coordinator-app>
  • You may want to use variable parameters in your Coordinator Job.
  • A variable parameter is defined as follows:
      ${variable_name}
  • You can define the variable values in the coordinator.properties file. For example:
$ cat coordinator.properties
oozie.coord.application.path=hdfs://localhost:9000/tmp/coord
freq=60
startTime=2009-01-01T05:00Z
endTime=2009-01-01T06:00Z
workflowPath=hdfs://localhost:9000/tmp/workflows

Triggering Coordinator Jobs When Data Directory is Available

  • You can define input data dependencies for your Coordinator Job. Your Job will not run until the input directory is created.
    • eg. hdfs://localhost:9000/tmp/revenue_feed/2010/06/01/03/
$ cat coordinator.xml
<coordinator-app name="MY_APP" frequency="1440" start="2009-02-01T00:00Z" end="2009-02-07T00:00Z" timezone="UTC" xmlns="uri:oozie:coordinator:0.1"> <datasets> <dataset name="input1" frequency="60" initial-instance="2009-01-01T00:00Z" timezone="UTC"> <uri-template>hdfs://localhost:9000/tmp/revenue_feed/${YEAR}/${MONTH}/${DAY}/${HOUR}</uri-template> </dataset> </datasets> <input-events> <data-in name="coordInput1" dataset="input1"> <start-instance>${coord:current(-23)}</start-instance> <end-instance>${coord:current(0)}</end-instance> </data-in> </input-events> <action> <workflow> <app-path>hdfs://localhost:9000/tmp/workflows</app-path> </workflow> </action> </coordinator-app>
  • This Coordinator Job runs every 1440 minutes (24 hours).
  • It will start on 2009-02-01T00:00Z and end on 2009-02-07T00:00Z (7 days). The Coordinator jobs will be materialized at these times:
    • 2009-02-01T00:00Z
    • 2009-02-02T00:00Z
    • 2009-02-03T00:00Z
    • 2009-02-04T00:00Z
    • 2009-02-05T00:00Z
    • 2009-02-06T00:00Z
  • However, these jobs may not run at the specified times because we added input data dependencies for each job. When each job is materialized, Oozie will check if the specified input data is available.

    • If the data is available, the job will run.
    • If the data is not available, the job will wait in the Oozie queue until the input data is created.
  • Each of these daily jobs is dependent on the last 24 hours of hourly data from the input1 feed. Within the input-events section, you will notice that the data-in block specifies the start and end instances for the input data dependencies.

    • ${coord:current(0)} is a function that returns the current instance of the input1 dataset
    • ${coord:current(-23)} is a function that returns the 23rd oldest instance of the input1 dataset
    • For the Coordinator Job that is materialized on 2009-02-01T00:00Z, the start-instance will be 2009-01-31T01:00Z (23 hours earlier) and the end-instance will be 2009-02-01T00:00Z.
   <input-events>
      <data-in name="coordInput1" dataset="input1"> <start-instance>${coord:current(-23)}</start-instance> <end-instance>${coord:current(0)}</end-instance> </data-in> </input-events>
  • The datasets section defines metadata for all of the input datasets
    • name = logical name for the dataset
    • frequency = how often data is written to this dataset
    • initial-instance = timestamp for the first instance of this dataset. Older instances will be ignored.
    • uri-template = HDFS directory structure for the dataset
  • In this example, the HDFS directory structure for the input1 dataset is as follows:
    • /tmp/revenue_feed/2009/01/01/00/
    • /tmp/revenue_feed/2009/01/01/01/
    • /tmp/revenue_feed/2009/01/01/02/
    • etc...
   <datasets>
      <dataset name="input1" frequency="60" initial-instance="2009-01-01T00:00Z" timezone="UTC"> <uri-template>hdfs://localhost:9000/tmp/revenue_feed/${YEAR}/${MONTH}/${DAY}/${HOUR}</uri-template> </dataset> </datasets>

Triggering Coordinator Jobs When Data File is Available

  • You can define input data dependencies for your Coordinator Job. Your Job will not run until the input file is created.
    • eg. hdfs://localhost:9000/tmp/revenue_feed/2010/06/01/03/trigger.dat
$ cat coordinator.xml
<coordinator-app name="MY_APP" frequency="1440" start="2009-02-01T00:00Z" end="2009-02-07T00:00Z" timezone="UTC" xmlns="uri:oozie:coordinator:0.1"> <datasets> <dataset name="input1" frequency="60" initial-instance="2009-01-01T00:00Z" timezone="UTC"> <uri-template>hdfs://localhost:9000/tmp/revenue_feed/${YEAR}/${MONTH}/${DAY}/${HOUR}</uri-template> <done-flag>trigger.dat</done-flag> </dataset> </datasets> <input-events> <data-in name="coordInput1" dataset="input1"> <start-instance>${coord:current(-23)}</start-instance> <end-instance>${coord:current(0)}</end-instance> </data-in> </input-events> <action> <workflow> <app-path>hdfs://localhost:9000/tmp/workflows</app-path> </workflow> </action> </coordinator-app>

Coordinator Jobs That Use Rollups

  • You may have a Coordinator Job that will run once a day, and will trigger a workflow that aggregates 24 instances of hourly data.
$ cat coordinator.xml
<coordinator-app name="MY_APP" frequency="1440" start="2009-02-01T00:00Z" end="2009-02-02T00:00Z" timezone="UTC" xmlns="uri:oozie:coordinator:0.1"> <datasets> <dataset name="input1" frequency="60" initial-instance="2009-01-01T00:00Z" timezone="UTC"> <uri-template>hdfs://localhost:9000/tmp/revenue_feed/${YEAR}/${MONTH}/${DAY}/${HOUR}</uri-template> </dataset> </datasets> <input-events> <data-in name="coordInput1" dataset="input1"> <start-instance>${coord:current(-23)}</start-instance> <end-instance>${coord:current(0)}</end-instance> </data-in> </input-events> <action> <workflow> <app-path>hdfs://localhost:9000/tmp/workflows</app-path> <!-- You can define properties that you want to pass to your workflow here --> <!-- The input_files variable will contain the hdfs path for the 24 input files --> <configuration> <property> <name>input_files</name> <value>${coord:dataIn('coordInput1')}</value> </property> </configuration> </workflow> </action> </coordinator-app>

Coordinator Jobs That Use Sliding Windows

  • You may have a Coordinator Job that will run every 5 minutes, and will trigger a workflow that does a lookup on the last 60mins of data.
  • Since the Job frequency is less than the Input frequency, the data seems to slide with the job (i.e. input files are used across multiple runs).
$ cat coordinator.xml
<coordinator-app name="MY_APP" frequency="5" start="2009-02-01T00:00Z" end="2009-02-02T00:00Z" timezone="UTC" xmlns="uri:oozie:coordinator:0.1"> <datasets> <dataset name="input1" frequency="15" initial-instance="2009-01-01T00:00Z" timezone="UTC"> <uri-template>hdfs://localhost:9000/tmp/revenue_feed/${YEAR}/${MONTH}/${DAY}/${HOUR}/${MINUTE}</uri-template> </dataset> </datasets> <input-events> <data-in name="coordInput1" dataset="input1"> <start-instance>${coord:current(-3)}</start-instance> <end-instance>${coord:current(0)}</end-instance> </data-in> </input-events> <action> <workflow> <app-path>hdfs://localhost:9000/tmp/workflows</app-path> <!-- You can define properties that you want to pass to your workflow here --> <!-- The input_files variable will contain the hdfs path for the most recent 4 input files --> <configuration> <property> <name>input_files</name> <value>${coord:dataIn('coordInput1')}</value> </property> </configuration> </workflow> </action> </coordinator-app>

Coordinator Job to Create SLA events

A coordinator action could be configured to record the events required to evaluate SLA compliance.

$ cat coordinator.xml 
<coordinator-app xmlns="uri:oozie:coordinator:0.1" xmlns:sla="uri:oozie:sla:0.1" name="sla_coord" frequency="60" start="2009-03-06T010:00Z" end="2009-03-06T11:00Z" timezone="America/Los_Angeles"> <controls> <timeout>10</timeout> <concurrency>2</concurrency> <execution>LIFO</execution> </controls> <datasets> </datasets> <action> <workflow> <app-path>hdfs://localhost:9000/tmp/kamrul/workflows/sla-map-reduce</app-path> <configuration> <property> <name>TEST </name> <value> ${coord:nominalTime()} </value> </property> </configuration> </workflow> <sla:info> <sla:app-name>test-app</sla:app-name> <sla:nominal-time>${coord:nominalTime()}</sla:nominal-time> <sla:should-start>${5 * MINUTES}</sla:should-start> <sla:should-end>${2 * HOURS}</sla:should-end> <sla:notification-msg>Notifying User for ${coord:nominalTime()} nominal time</sla:notification-msg> <sla:alert-contact>www@yahoo.com</sla:alert-contact> <sla:dev-contact>abc@yahoo.com</sla:dev-contact> <sla:qa-contact>abc@yahoo.com</sla:qa-contact> <sla:se-contact>abc@yahoo.com</sla:se-contact> <sla:alert-frequency>LAST_HOUR</sla:alert-frequency> <sla:alert-percentage>80</sla:alert-percentage> </sla:info> </action> </coordinator-app>
  • Each coordinator action will create at least three events for normal processing.
    • The event CREATED specifies that the coordinator action is registered for SLA tracking.
    • When the action starts executing, an event record of type STARTED is inserted into sla_event table..
    • Finally when an action finishes, event of type either SUCCEEDED/KILLED/FAILED is generated.

Coordinator Job With Timeouts

A coordinator job will timeout if it has not run within the specified amount of time.

  • Refer to the timeout tag
$ cat coordinator.xml 
<coordinator-app name="END2END-20" frequency="${coord:days(1)}" start="${start}" end="${end}" timezone="${timezone}" xmlns="uri:oozie:coordinator:0.1"> <controls> <timeout>10</timeout> <!-- timeout if job is not run after 10 minutes --> <concurrency>4</concurrency> </controls> <datasets> <dataset name="din" frequency="${coord:hours(10)}" initial-instance="${ds_start}" timezone="${timezone}"> <uri-template>${baseFsURI}/${YEAR}/${MONTH}/${DAY}/${HOUR}/${MINUTE}</uri-template> <done-flag>HELLO</done-flag> </dataset> <dataset name="dout" frequency="${coord:minutes(300)}" initial-instance="${ds_start}" timezone="${timezone}"> <uri-template>${baseFsURI}/${YEAR}/${MONTH}/${DAY}/${HOUR}/${MINUTE}</uri-template> </dataset> </datasets> <input-events> <data-in name="IN1" dataset="din"> <instance>${coord:current(-1)}</instance> </data-in> </input-events> <output-events> <data-out name="OUT" dataset="dout"> <instance>${coord:current(1)}</instance> </data-out> </output-events> <action> <workflow> <app-path>${wf_app_path}</app-path> <configuration> <property> <name>jobTracker</name> <value>${jobTracker}</value> </property> <property> <name>nameNode</name> <value>${nameNode}</value> </property> <property> <name>queueName</name> <value>${queueName}</value> </property> <property> <name>inputDir</name> <value>${coord:dataIn('IN1')}</value> </property> <property> <name>outputDir</name> <value>${coord:dataOut('OUT')}</value> </property> </configuration> </workflow> </action> </coordinator-app>

Coordinator Job With Specific Input File Dependency

A coordinator action can be triggered when a specific file exists in HDFS.

  • Refer to the done-flag tag If the done-flag tag is not specified, then Oozie configures Hadoop to create a _SUCCESS file in the output directory.
$ cat coordinator.xml 
<coordinator-app name="END2END-20" frequency="${coord:days(1)}" start="${start}" end="${end}" timezone="${timezone}" xmlns="uri:oozie:coordinator:0.1"> <controls> <timeout>10</timeout> <concurrency>6</concurrency> <execution>FIFO</execution> </controls> <datasets> <dataset name="din" frequency="${coord:hours(10)}" initial-instance="${ds_start}" timezone="${timezone}"> <uri-template>${baseFsURI}/${YEAR}/${MONTH}/${DAY}/${HOUR}/${MINUTE}</uri-template> <done-flag>HELLO</done-flag> </dataset> <dataset name="dout" frequency="${coord:minutes(300)}" initial-instance="${ds_start}" timezone="${timezone}"> <uri-template>${baseFsURI}/${YEAR}/${MONTH}/${DAY}/${HOUR}/${MINUTE}</uri-template> </dataset> </datasets> <input-events> <data-in name="IN1" dataset="din"> <instance>${coord:current(-1)}</instance> </data-in> </input-events> <output-events> <data-out name="OUT" dataset="dout"> <instance>${coord:current(1)}</instance> </data-out> </output-events> <action> <workflow> <app-path>${wf_app_path}</app-path> <configuration> <property> <name>inputDir</name> <value>${coord:dataIn('IN1')}</value> </property> <property> <name>outputDir</name> <value>${coord:dataOut('OUT')}</value> </property> </configuration> </workflow> </action> </coordinator-app>

Coordinator Job With EL Functions

A complex example with many EL functions:

  • latest function
  • current function
  • coord:days function
  • coord:hours function
  • coord:hoursInDay function
$ cat coordinator.xml 
<coordinator-app xmlns="uri:oozie:coordinator:0.1" xmlns:sla="uri:oozie:sla:0.1" name="ABF1_region_session_base_coord" frequency="${coord:days(1)}" start="${start}" end="${end}" timezone="America/New_York"> <datasets> <include>${include_ds_files}</include> <dataset name="ABF1_regular" frequency="${coord:hours(1)}" initial-instance="${ds_start1}" timezone="America/New_York"> <uri-template>${baseFsURI}/${YEAR}${MONTH}${DAY}${HOUR}${MINUTE}/regular</uri-template> </dataset> <dataset name="ABF1_late" frequency="${coord:hours(1)}" initial-instance="${ds_start1}" timezone="America/New_York"> <uri-template>${baseFsURI}/${YEAR}${MONTH}${DAY}${HOUR}${MINUTE}/late</uri-template> </dataset> <dataset name="region_session_base" frequency="${coord:days(1)}" initial-instance="${ds_start1}" timezone="America/New_York"> <uri-template>${baseFsURI}/${YEAR}${MONTH}${DAY}/5/</uri-template> </dataset> </datasets> <input-events> <data-in name="input_regular" dataset="ABF1_regular"> <start-instance>${coord:current(-(coord:hoursInDay(0) - 23)-3)}</start-instance> <end-instance>${coord:current(-3)}</end-instance> </data-in> <data-in name="input_late" dataset="ABF1_late"> <start-instance>${coord:current(-(coord:hoursInDay(0) - 23)-3)}</start-instance> <end-instance>${coord:current(-3)}</end-instance> </data-in> <data-in name="input_metadata_tz" dataset="metadata_tz"> <instance>${coord:latest(0)}</instance> </data-in> <data-in name="input_metadata_domain_property" dataset="metadata_domain_property"> <instance>${coord:latest(0)}</instance> </data-in> <data-in name="input_metadata_property" dataset="metadata_property"> <instance>${coord:latest(0)}</instance> </data-in> <data-in name="input_metadata_dim_page" dataset="metadata_dim_page"> <instance>${coord:latest(0)}</instance> </data-in> </input-events> <output-events> <data-out name="OUT" dataset="region_session_base"> <instance>${coord:current(0)}</instance> </data-out> </output-events> <action> <workflow> <app-path>${wf_app_path}</app-path> <configuration> <property> <name>jobTracker</name> <value>${jobTracker}</value> </property> <property> <name>nameNode</name> <value>${nameNode}</value> </property> <property> <name>queueName</name> <value>${queueName}</value> </property> <property> <name>inputDir</name> <value>${coord:dataIn('input_regular')},${coord:dataIn('input_late')},${coord:dataIn('input_metadata_tz')},${coord:dataIn('input_metadata_domain_property')},${coord:dataIn('input_metadata_property')}</value> </property> <property> <name>outputDir</name> <value>${coord:dataOut('OUT')}</value> </property> </configuration> </workflow> </action> </coordinator-app>

Use Sync Mode to Simulate Async Datasets

Users can use sync mode to simulate async datasets. Those actions whose input data are available will run. In contrast, those actions whose input data are not available will be waiting till time out (Note catch up mode has infinity time out). To use this approach, users have to specify the minimum frequency of data instance generation. The following example shows how to simulate an async dataset where data instances are generated for every at minimum 5 minutes. Actions will time out after 10 minutes under current mode if they do not have data instances to run on.

Obviously, a downside of this approach is that there will be too many actions created doing nothing but waiting. This is particularly true when there exist big time gaps between any two consecutive data instances.

$ cat coordinator.xml 
<coordinator-app name="MY_APP" frequency="${frequency}" start="${start}" end="${end}" timezone="${timezone}" xmlns="uri:oozie:coordinator:0.1"> <controls> <timeout>10</timeout> </controls> <datasets> <dataset name="din1" frequency="${min_frequency}" initial-instance="${start}" timezone="${timezone}"> <uri-template>hdfs://localhost:9000/tmp/oozie/${YEAR}/${MONTH}/${DAY}/${HOUR}/${MINUTE}</uri-template> </dataset> </datasets> <input-events> <data-in name="din1" dataset="din1"> <instance>${coord:current(0)}</instance> </data-in> </input-events> <action> <workflow> <app-path>hdfs://localhost:9000/user/oozie/examples/workflows/map-reduce</app-path> </workflow> </action> </coordinator-app> $ cat coord-job.properties oozie.coord.application.path=hdfs://localhost:9000/user/oozie/examples/coordinator frequency=5 min_frequency=5 start=2010-07-30T23:00Z end=2010-07-30T23:25Z timezone=UTC

Coordinator Commands

Submit a Job
  • Use the following command to submit this Coordinator Job on the Axonite Blue Grid.
  • On success, a Oozie ID will be returned to you.
    • In this example, the Oozie ID is: 0000004-091209145813488-oozie-dani-C
$ export OOZIE_URL=http://localhost:9999/oozie/
$ oozie job -run -config coordinator.properties
job: 0000004-091209145813488-oozie-dani-C
Check Status of a Job
  • You can check the status of your Job by using the Oozie ID (which is returned at submission time)
$ oozie job -info 0000004-091209145813488-oozie-dani-C
List All Jobs
  • You can check the status of all your Coordinator Jobs.
$ oozie jobs -jobtype coord
Stop/Kill A Job
$ oozie job -kill <oozie ID>

转载于:https://www.cnblogs.com/doosmile/p/6275198.html

<think>好的,我现在需要帮助用户解决他们遇到的Java编程问题。用户提供的代码中出现了“Cannot instantiate the type Path”错误,我需要分析原因并提供正确的改写方法。 首先,用户的问题出现在构造函数中,他们尝试使用`new Path(input)`和`new Path(output)`来实例化Path对象。但根据之前的对话,我已经知道Path是一个接口,不能直接实例化。所以,用户在这里的错误是直接调用了Path的构造函数,而应该使用工厂方法。 接下来,我需要确定用户使用的Java版本,因为不同的版本可能有不同的推荐方法。例如,Java 7引入了Paths.get(),而Java 11之后推荐使用Path.of()。如果用户使用的是较旧的版本,可能需要使用Paths.get()或者FileSystems.getDefault().getPath()。 然后,我需要检查用户是否正确导入了java.nio.file.Path,而不是其他同名的类,比如Hadoop中的Path类。如果用户错误地导入了其他库的Path类,也会导致这个问题。因此,在示例代码中,我需要明确写出正确的导入语句,避免混淆。 此外,用户可能是在处理文件操作,特别是合并文件,所以可能需要确认他们的使用场景是否需要其他处理,比如文件系统的访问权限,或者是否需要处理相对路径和绝对路径的问题。不过,用户的问题主要集中在Path的实例化上,所以这部分可能暂时不需要深入。 现在,我需要给出具体的改写代码。根据之前的建议,有三种方法:Paths.get()、FileSystems.getDefault().getPath()和Path.of()。考虑到用户可能使用的是较新的Java版本,推荐使用Path.of(),因为更简洁。但如果用户的环境是Java 7或8,则需要使用Paths.get()。这里可能需要同时提供两种方案,并说明适用版本。 另外,用户可能在构造函数中初始化inputPathoutputPath,所以需要确保他们在构造函数中正确调用了这些工厂方法。同时,需要提醒用户处理可能的异常,比如无效的路径格式,但根据代码示例,用户可能已经处理了这些,或者问题仅在于实例化。 最后,需要总结改写后的代码,并强调导入正确包的重要性,以及避免直接实例化接口的原则。可能还需要提醒用户如果使用了其他库的Path类,比如Hadoop,需要特别处理,但根据代码中的注释,看起来他们可能是在处理本地文件系统,所以暂时假设是标准Java NIO的Path。</think>以下是针对代码中`Cannot instantiate the type Path`错误的改写方案及详细说明: --- ### **错误原因分析** 原代码尝试通过`new Path()`直接实例化接口,而`java.nio.file.Path`是一个**接口**,必须通过工厂方法创建实例。 --- ### **改写后的代码** ```java import java.nio.file.Path; import java.nio.file.Paths; // Java 7+ 标准方案 // 或 import java.nio.file.FileSystems; // 替代方案 public class MergeFile { private Path inputPath; // 待合并文件的目录路径 private Path outputPath; // 输出文件路径 // 构造函数改造 public MergeFile(String input, String output) { // 方案一:使用 Paths.get()(推荐,兼容Java 7+) this.inputPath = Paths.get(input); this.outputPath = Paths.get(output); // 方案二:使用 Path.of()(需Java 11+) // this.inputPath = Path.of(input); // this.outputPath = Path.of(output); // 方案三:通过 FileSystems(适用于复杂路径操作) // this.inputPath = FileSystems.getDefault().getPath(input); // this.outputPath = FileSystems.getDefault().getPath(output); } } ``` --- ### **关键修改点说明** 1. **替换实例化方式** - 原错误代码:`new Path(input)` - 修改后:使用`Paths.get()`/`Path.of()`等工厂方法 2. **导包验证** - 必须导入标准NIO包的Path类: ```java import java.nio.file.Path; // 正确 ``` - 避免误导其他同名类(如Hadoop的`org.apache.hadoop.fs.Path`) 3. **版本适配建议** - **Java 7~10**:使用`Paths.get()` - **Java 11+**:优先使用更简洁的`Path.of()` - 需要文件系统扩展操作时,使用`FileSystems.getDefault()` --- ### **扩展:路径操作示例** ```java // 获取文件名 String fileName = outputPath.getFileName().toString(); // 路径拼接(添加子目录) Path subdir = inputPath.resolve("subfolder"); // 转换为绝对路径 Path absPath = outputPath.toAbsolutePath(); // 检查路径类型 boolean isDirectory = Files.isDirectory(inputPath); ``` --- ### **常见问题排查** 1. **NoSuchFileException** 检查路径字符串格式: - Windows:`Paths.get("C:\\data\\file.txt")`(需转义反斜杠) - Linux:`Paths.get("/home/user/file.txt")` 2. **跨平台路径处理** 使用`File.separator`动态适配分隔符: ```java String dynamicPath = "data" + File.separator + "files"; Path path = Paths.get(dynamicPath); ``` 3. **Hadoop场景特例** 如果实际使用的是Hadoop的`Path`类(需单独处理): ```java import org.apache.hadoop.fs.Path; // Hadoop专用路径类 Path hdfsPath = new Path("hdfs://namenode/path"); // Hadoop允许直接new ``` --- ### **最终建议** 1. 统一使用`Paths.get()`作为默认方案 2. 在构造函数中添加空值检查: ```java public MergeFile(String input, String output) { Objects.requireNonNull(input, "Input path cannot be null"); this.inputPath = Paths.get(input); } ``` 3. 使用`Files`工具类进行文件操作验证: ```java if (!Files.exists(inputPath)) { throw new IllegalArgumentException("输入路径不存在"); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值