D. Divide by three, multiply by two(要什么脑子,暴力吖)

本文介绍了一个有趣的问题:如何重新排列一个包含特定操作后的数值序列,使其满足后一个数要么是前一个数的三分之一,要么是两倍的条件。通过一个简单而巧妙的方法,确保了在任意给定的序列中都能找到正确的顺序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D. Divide by three, multiply by two

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Polycarp likes to play with numbers. He takes some integer number xx, writes it down on the board, and then performs with it n−1n−1operations of the two kinds:

  • divide the number xx by 33 (xx must be divisible by 33);
  • multiply the number xx by 22.

After each operation, Polycarp writes down the result on the board and replaces xx by the result. So there will be nn numbers on the board after all.

You are given a sequence of length nn — the numbers that Polycarp wrote down. This sequence is given in arbitrary order, i.e. the order of the sequence can mismatch the order of the numbers written on the board.

Your problem is to rearrange (reorder) elements of this sequence in such a way that it can match possible Polycarp's game in the order of the numbers written on the board. I.e. each next number will be exactly two times of the previous number or exactly one third of previous number.

It is guaranteed that the answer exists.

Input

The first line of the input contatins an integer number nn (2≤n≤1002≤n≤100) — the number of the elements in the sequence. The second line of the input contains nn integer numbers a1,a2,…,ana1,a2,…,an (1≤ai≤3⋅10181≤ai≤3⋅1018) — rearranged (reordered) sequence that Polycarp can wrote down on the board.

Output

Print nn integer numbers — rearranged (reordered) input sequence that can be the sequence that Polycarp could write down on the board.

It is guaranteed that the answer exists.

Examples

input

Copy

6
4 8 6 3 12 9

output

Copy

9 3 6 12 4 8 

input

Copy

4
42 28 84 126

output

Copy

126 42 84 28 

input

Copy

2
1000000000000000000 3000000000000000000

output

Copy

3000000000000000000 1000000000000000000 

Note

In the first example the given sequence can be rearranged in the following way: [9,3,6,12,4,8][9,3,6,12,4,8]. It can match possible Polycarp's game which started with x=9x=9.

 

看题目,给你一个序列,重新排序使得新数列满足以下条件

后一个数要么是前一个数的三分之一,要么是两倍。完。。。

 

仔细看一遍题,保证一定有解,并且,解唯一(没说多组答案)

然后就好玩了,随便从原数列中抽一个数,向后向前延伸即可,

本来是要dfs的,后来一想,题目这么氵,那就直接写好了

时间复杂度大概emm直接就是O(n)吧

ac代码如下

#include<bits/stdc++.h>
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#include<string.h>
#include <queue>
using namespace std;
typedef long long ll;
ll cnt[105];
ll num[300];
int n;
map<ll,int> P;
int main()
{
    cin>>n;
    for(int i=0;i<n;i++)
        cin>>cnt[i],P[cnt[i]]++;

    num[105]=cnt[0];

    for(int i=105;;i++)
    {
        ll c=num[i];
        if(c%3==0 && P[c/3])
        {
            P[c/3]--;
            num[i+1]=c/3;
        }
        else if(P[c*2])
        {
            P[c*2]--;
            num[i+1]=c*2;
        }
        if(!num[i+1])
            break;
    }

    for(int i=105;;i--)
    {
        ll c=num[i];
        if(P[c*3])
        {
            P[c*3]--;
            num[i-1]=c*3;
        }
        else if(c%2==0 && P[c/2])
        {
            P[c/2]--;
            num[i-1]=c/2;
        }
        if(!num[i-1])
            break;
    }

    int i=0;

    while(!num[i])i++;

    printf("%lld",num[i++]);

    while(num[i])printf(" %lld",num[i++]);

    printf("\n");


    return 0;
}

 

 

 

1. Problem Description: A complex number is a number of the form a +bi, where a and b are real numbers and i is √-1 The numbers a and b are known as the real part and imaginary part of the complex number, respectively. You can perform addition, subtraction, multiplication, and division for complex numbers using the following formula: a+bi+c+di=(a+c)+(b+d)i a+bi-(c+di)=(a-c)+(b-d)i 第2页共2页 (a+bi)*(c+di)=(ac-bd)+(bc+ad)i (a+bi)/c+di)=(ac+bd)/c²+d²)+(bc-ad)i/(c²+d²) You can also obtain the absolute value for a complex number using the following formula: latbil=√a²+b (A complex number can be interpreted as a point on a plane by identifying the (a, b) values as the coordinates of the point. The absolute value of the complex number corresponds to the distance of the point to the origin, as shown in Figure 13.12b.) Design a class named Complex for representing complex numbers and the methods add, subtract, multiply, divide, abs for performing complex-number operations, and override toString method for returning a string representation for a complex number. The toString method returns a + bi as a string. If b is 0, it simply returns a. Provide three constructors Complex(a, b), Complex(a), and Complex(). Complex() creates a Complex object for number 0 and Complex(a) creates a Complex object with 0 for b. Also provide the getRealPart() and getlmaginaryPart() methods for returning the real and imaginary part of the complex number, respectively. Your Complex class should also implement the Cloneable interface. Write a test program that prompts the user to enter two complex numbers and display the result of their addition, subtraction, multiplication, and division. Here is a sample run: <Output> Enter the first complex number: 3.5 5.5 Enter the second complex number:-3.5 1 (3.5 + 5.5i) +(-3.5 + 1.0i)= 0.0 + 6.5 (3.5 + 5.5i)-(-3.5 + 1.0i)= 7.0 + 4.5i (3.5 + 5.5i)*(-3.5 + 1.0i) =-17.75 +-15.75i (3.5 + 5.5i) /(-3.5 + 1.0i)=-0.5094 +-1.7i |3.5 + 5.5il = 6.519202405202649 <End Output>
最新发布
06-09
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值