Pedestrian Detection

本文介绍了多位研究者在行人检测领域的贡献,包括Shanshan Zhang的Filtered Channel Features方法、Liliang Zhang对Faster R-CNN应用于行人检测的评估及Yonglong Tian利用深度学习进行行人检测的工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:http://blog.youkuaiyun.com/guojingjuan/article/details/52688985?locationNum=13&fps=1

1. Shanshan Zhang

源码:https://bitbucket.org/shanshanzhang/code_filteredchannelfeatures/src

 Shanshan Zhang, Rodrigo Benenson, Mohamed Omran, Jan Hosang, and Bernt Schiele. How far are we from solving pedestrian detection? (CVPR), 2016.
论文笔记:http://blog.youkuaiyun.com/jacobkong/article/details/55670981

 Shanshan Zhang, Rodrigo Benenson, and Bernt Schiele. Filtered channel features for pedestrian detection. (CVPR), 2015.
论文介绍:http://blog.youkuaiyun.com/cv_family_z/article/details/48246491

张姗姗介绍:https://www.mpi-inf.mpg.de/departments/computer-vision-and-multimodal-computing/people/alumni-and-former-members/shanshan-zhang/

2. Liliang Zhang

Is Faster R-CNN Doing Well for Pedestrian Detection?(ECCV)2016
Matlab源码:https://github.com/zhangliliang/RPN_BF/tree/RPN-pedestrian
论文介绍:http://blog.youkuaiyun.com/ture_dream/article/details/53087299

3. Yonglong Tian

http://personal.ie.cuhk.edu.hk/~ty014/
 Yonglong Tian, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Pedestrian detection aided by deep learning semantic tasks. (CVPR), 2015.
 Yonglong Tian, Ping Luo, XiaogangWang, and Xiaoou Tang. Deep learning strong parts for pedestrian detection. (ICCV), 2015.

4.代码集合doppia code

源码:https://bitbucket.org/rodrigob/doppia
这是一个代码集合,包含如下:
1. Pedestrian detection at 100 frames per second, R. Benenson. CVPR, 2012. 实时的
2. Stixels estimation without depth map computation
3. Fast stixels estimation for fast pedestrian detection
4. Seeking the strongest rigid detector
5. Ten years of pedestrian detection, what have we learned?
6. Face detection without bells and whistles

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值