BZOJ1853 Scoi2010 幸运数字 【枚举+容斥】

BZOJ1853 Scoi2010 幸运数字


Description

在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是“幸运号码”!但是这种“幸运号码”总是太少了,比如在[1,100]的区间内就只有6个(6,8,66,68,86,88),于是他又定义了一种“近似幸运号码”。lxhgww规定,凡是“幸运号码”的倍数都是“近似幸运号码”,当然,任何的“幸运号码”也都是“近似幸运号码”,比如12,16,666都是“近似幸运号码”。 现在lxhgww想知道在一段闭区间[a, b]内,“近似幸运号码”的个数。

Input

输入数据是一行,包括2个数字a和b

Output

输出数据是一行,包括1个数字,表示在闭区间[a, b]内“近似幸运号码”的个数

Sample Input

【样例输入1】
1 10
【样例输入2】
1234 4321

Sample Output

【样例输出1】
2
【样例输出2】
809

HINT

【数据范围】
对于30%的数据,保证1 < =a < =b < =1000000
对于100%的数据,保证1 < =a < =b < =10000000000


首先我们可以把所有由6和8组成的数dfs出来,数量不多一共只有两千个

然后我们发现对于i%j==0i\%j==0i%j==0,i在这里是没有意义的,这样筛一下大概就剩1000个左右,然后我们考虑暴力容斥,对于一个数w,在晒完的数里面如果有p个约数,那么我们把答案加上,1P(r/w−(l−1)/w)1^P(r/w-(l-1)/w)1P(r/w(l1)/w)
这个容斥我不证明,理解一下还是很简单的


#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define N 10010
vector<LL> number,v;
bool vis[N];
LL l,r,ans=0;
void dfs(LL tmp){
  if(tmp)number.push_back(tmp);
  if(tmp*10+6<=r)dfs(tmp*10+6);
  if(tmp*10+8<=r)dfs(tmp*10+8);
}
LL gcd(LL a,LL b){return b?gcd(b,a%b):a;}
void Find(int tmp,LL lcm,int sign){
  if(tmp==(signed)v.size()){
    if(lcm>1)ans+=(r/lcm-(l-1)/lcm)*sign;
    return;
  }
  Find(tmp+1,lcm,sign);
  double nxt=(double)v[tmp]/(double)gcd(v[tmp],lcm)*(double)lcm;
  if(nxt>r)return;
  Find(tmp+1,nxt,-sign);
}
void solve(){
  dfs(0);
  sort(number.begin(),number.end());
  int n=number.size()-1;
  for(int i=0;i<=n;i++)if(!vis[i])
    for(int j=i+1;j<=n;j++)
      if(number[j]%number[i]==0)vis[j]=1;
  for(int i=0;i<=n;i++)if(!vis[i])v.push_back(number[i]);
  reverse(v.begin(),v.end());
}
int main(){
  scanf("%lld%lld",&l,&r);
  solve();
  Find(0,1,-1);
  printf("%lld",ans);
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值