LOJ2422 NOIP2015 斗地主 【搜索+贪心】*

本文详细解析了LOJ2422NOIP2015斗地主问题的算法实现,通过贪心策略和特定情况的枚举,解决了一分手牌最少出牌次数的问题。文章分享了一种基于手牌状态的贪心算法,并提供了DP方法的对比,深入探讨了算法的严谨性和高效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LOJ2422 NOIP2015 斗地主


LINK


题目大意很简单,就是问你斗地主的一分手牌最少多少次出完


然后我们发现对于一种手牌状态,不考虑顺子的情况是可以贪心做掉的

然后我们直接枚举一下顺子出牌情况就可以了


LOJ上的数据随便写点基本贪心就行了

如果想过UOJ上的加强版的话还是把中间那一部分毒瘤的特判更优情况加上吧


当然也有个Smallfat大神用DP做掉的

我感觉DP更严谨一些,但是毕竟贪心好写嘛


#include<bits/stdc++.h>
using namespace std;
#define N 20
int n,ans,is;
int col[N],cnt[N],tmp[N];
int cal(){
  for(int i=1;i<=4;i++)tmp[i]=cnt[i];
  int res=0;
  while(tmp[4]&&tmp[2]>=2)res++,tmp[4]--,tmp[2]-=2;
  while(tmp[4]&&tmp[1]>=2)res++,tmp[4]--,tmp[1]-=2;
  //
  while(tmp[1]&&!tmp[2]&&tmp[3]>=2&&tmp[4])    res+=2,tmp[1]--,tmp[3]-=2,tmp[4]--;
  while(!tmp[1]&&tmp[2]&&tmp[3]>=3&&!tmp[4])   res+=2,tmp[2]--,tmp[3]-=3;
  while(tmp[1]&&tmp[2]&&tmp[3]&&tmp[4]>=2)     res+=2,tmp[1]--,tmp[2]--,tmp[3]--,tmp[4]-=2;
  while(tmp[1]&&tmp[2]&&!tmp[3]&&tmp[4]>=2)    res+=2,tmp[1]--,tmp[2]--,tmp[4]-=2;
  while(!tmp[1]&&!tmp[2]&&tmp[3]>=2&&tmp[4]>=2)res+=2,tmp[3]-=2,tmp[4]-=2;
  while(!tmp[1]&&!tmp[2]&&tmp[3]>=2&&tmp[4])   res+=2,tmp[3]-=2,tmp[4]--;
  //
  while(tmp[4]&&tmp[2])res++,tmp[4]--,tmp[2]--;
  while(tmp[4]>=2)res++,tmp[4]-=2;
  while(tmp[3]&&tmp[2])res++,tmp[3]--,tmp[2]--;
  while(tmp[3]&&tmp[1])res++,tmp[3]--,tmp[1]--;
  if(is&&tmp[1]>=2)tmp[1]-=2,res++;
  return res+tmp[1]+tmp[2]+tmp[3]+tmp[4];
}
bool check(int l,int r,int num){
  for(int i=l;i<=r;i++)if(col[i]<num)return 0;
  return 1;
}
void modify(int l,int r,int num){
  for(int i=l;i<=r;i++){
    cnt[col[i]]--;
    col[i]+=num;
    cnt[col[i]]++;
  }
}
void dfs(int step){
  if(step>=ans)return;
  ans=min(ans,step+cal());
  for(int l=2;l<=13;l++){
    for(int len=5;len+l-1<=13;len++){
      int r=len+l-1;
      if(!check(l,r,1))break;
      modify(l,r,-1);
      dfs(step+1);
      modify(l,r,1);
    }
  }
  for(int l=2;l<=13;l++){
    for(int len=3;len+l-1<=13;len++){
      int r=len+l-1;
      if(!check(l,r,2))break;
      modify(l,r,-2);
      dfs(step+1);
      modify(l,r,2);
    }
  }
  for(int l=2;l<=13;l++){
    for(int len=2;len+l-1<=14;len++){
      int r=len+l-1;
      if(!check(l,r,3))break;
      modify(l,r,-3);
      dfs(step+1);
      modify(l,r,3);
    }
  }
}
void solve(){
  int op,x;ans=n;
  for(int i=0;i<=13;i++)col[i]=0,cnt[i]=0;
  for(int i=1;i<=n;i++){
    scanf("%d%d",&op,&x);
    if(op>1)op--;
    else if(op)op=13;
    col[op]++;
  }
  for(int i=1;i<=13;i++)if(col[i])cnt[col[i]]++;
  cnt[1]+=col[0];
  is=(col[0]==2);
  dfs(0);
  printf("%d\n",ans);
}
int main(){
  int T;scanf("%d%d",&T,&n);
  while(T--)solve();
  return 0;
}
06-21
<think>我们正在查询与LOJ6279相关的编程题目或解决方案。LOJ(LibreOJ)是一个在线的评测系统,主要收录算法竞赛题目。根据题号6279,我们需要确定该题目的具体内容。由于我无法直接访问网络,我将基于已知信息进行推理。在算法竞赛中,LOJ的题目编号通常与特定的题目对应。题号6279可能对应一个特定的问题。根据常见的题目类型,我们可以推测它可能涉及数据结构或算法。然而,为了准确回答,我们可以尝试回忆或推断常见的LOJ题目。例如,LOJ6000系列题目多为数据结构题,如线段树、树状数组等。实际上,通过搜索记忆,我回想起LOJ6279是“数列分块入门3”(BlockArray3)题目。这是“分块”系列题目中的一题。题目描述:给出一个长为n的数列,以及n个操作,操作涉及区间加法,询问区间内小于某个值x的前驱(即最大的小于x的数)。因此,用户需要的是关于LOJ6279题目的描述和解决方案。解决方案:由于题目要求分块处理,我们将数列分成若干块,每块大小为sqrt(n)。对于每个块,我们维护一个有序的数组(用于二分查找)以及一个加法标记(记录整个块被加了多少)。操作:1.区间加法:对于整块,直接更新加法标记;对于不完整的块,暴力更新元素值,然后重新排序该块(或者重新构建有序数组)。2.查询区间内小于x的前驱:遍历区间内的所有块。对于整块,在块的有序数组中二分查找小于(x-加法标记)的最大值;对于不完整的块,暴力遍历每个元素,判断是否小于x(注意加上加法标记)并更新最大值。代码实现(C++)示例:```cpp#include<iostream>#include<vector>#include<cmath>#include<algorithm>#include<climits>usingnamespacestd;constintMAXN=100010;constintBLOCK_SIZE=320;//约sqrt(MAXN)intn;vector<int>a;vector<int>block_add;//每块的加法标记vector<vector<int>>sorted_blocks;//每块的有序数组voidinit(){intblock_num=(n+BLOCK_SIZE-1)/BLOCK_SIZE;block_add.assign(block_num,0);sorted_blocks.resize(block_num);for(inti=0;i<n;i++){sorted_blocks[i/BLOCK_SIZE].push_back(a[i]);}for(inti=0;i<block_num;i++){sort(sorted_blocks[i].begin(),sorted_blocks[i].end());}}voidupdate_block(intblock_id){sorted_blocks[block_id].clear();intstart=block_id*BLOCK_SIZE;intend=min((block_id+1)*BLOCK_SIZE,n);for(inti=start;i<end;i++){sorted_blocks[block_id].push_back(a[i]);}sort(sorted_blocks[block_id].begin(),sorted_blocks[block_id].end());}voidadd(intl,intr,intc){intblock_l=l/BLOCK_SIZE,block_r=r/BLOCK_SIZE;if(block_l==block_r){for(inti=l;i<=r;i++){a[i]+=c;}update_block(block_l);}else{for(inti=l;i<(block_l+1)*BLOCK_SIZE;i++){a[i]+=c;}update_block(block_l);for(inti=block_l+1;i<block_r;i++){block_add[i]+=c;}for(inti=block_r*BLOCK_SIZE;i<=r;i++){a[i]+=c;}update_block(block_r);}}intquery(intl,intr,intc){intblock_l=l/BLOCK_SIZE,block_r=r/BLOCK_SIZE;intans=-1;if(block_l==block_r){for(inti=l;i<=r;i++){intval=a[i]+block_add[block_l];if(val<c){if(val>ans)ans=val;}}}else{for(inti=l;i<(block_l+1)*BLOCK_SIZE;i++){intval=a[i]+block_add[block_l];if(val<c){if(val>ans)ans=val;}}for(inti=block_l+1;i<block_r;i++){//在块i的有序数组中二分查找小于c-block_add[i]的最大值inttarget=c-block_add[i];autoit=lower_bound(sorted_blocks[i].begin(),sorted_blocks[i].end(),target);if(it!=sorted_blocks[i].begin()){it--;intval=*it+block_add[i];if(val>ans)ans=val;}}for(inti=block_r*BLOCK_SIZE;i<=r;i++){intval=a[i]+block_add[block_r];if(val<c){if(val>ans)ans=val;}}}returnans;}intmain(){cin>>n;a.resize(n);for(inti=0;i<n;i++){cin>>a[i];}init();for(inti=0;i<n;i++){intop,l,r,c;cin>>op>>l>>r>>c;l--;r--;//如果题目输入是1-indexed,则转换为0-indexedif(op==0){add(l,r,c);}else{cout<<query(l,r,c)<<endl;}}return0;}```注意:上述代码是示例代码,可能需要根据题目具体输入要求进行调整。§§相关问题§§1.LOJ6279题目的具体描述是什么?2.分块算法的时间复杂度是多少?3.除了分块,还有哪些方法可以解决LOJ6279?4.如何优化分块算法的常数?5.分块算法适用于哪些场景?</think>### LOJ 6279 题目分析与解决方案 **题目描述**LOJ 6279 是 LibreOJ 上的 **"数列分块入门 3"**,属于分块算法的经典练习题。核心要求如下: - **操作 1**:区间 $[l, r]$ 内每个数加上值 $c$ - **操作 2**:查询区间 $[l, r]$ 内小于 $c$ 的**最大元素值**(即前驱),不存在时返回 $-1$ #### 分块算法设计 分块的核心思想是将数列划分为 $\sqrt{n}$ 大小的块,平衡暴力操作与批量处理。 ##### 关键数据结构 1. **块内有序数组**: - 每块维护一个排序后的数组,用于二分查找前驱。 - 示例:块 $B_i$ 的排序数组为 $S_i$。 2. **加法懒标记**: - 记录整块被加的总值 $add_i$(不影响块内有序性)。 ##### 操作实现 1. **区间加法($[l, r] + c$)**: - **整块**:直接更新懒标记 $add_i \gets add_i + c$,时间复杂度 $O(1)$。 - **碎块**:暴力修改元素值,并**重构有序数组**(排序),时间复杂度 $O(\sqrt{n} \log \sqrt{n})$。 2. **查询前驱($[l, r]$ 内 $< c$ 的最大值)**: - **整块**:在有序数组 $S_i$ 中二分查找 $c - add_i$ 的前驱,时间复杂度 $O(\log \sqrt{n})$。 - **碎块**:暴力遍历元素,检查 $a_j + add_i < c$ 并更新最大值,时间复杂度 $O(\sqrt{n})$。 #### 代码实现(C++) ```cpp #include <iostream> #include <vector> #include <cmath> #include <algorithm> #include <climits> using namespace std; const int MAXN = 100010; int n, block_size; vector<int> a; vector<int> add_tag; // 块的加法标记 vector<vector<int>> blocks; // 每块的有序数组 void init() { block_size = sqrt(n); int block_num = (n + block_size - 1) / block_size; add_tag.assign(block_num, 0); blocks.resize(block_num); for (int i = 0; i < n; i++) blocks[i / block_size].push_back(a[i]); for (int i = 0; i < block_num; i++) sort(blocks[i].begin(), blocks[i].end()); } void rebuild_block(int block_id) { blocks[block_id].clear(); int start = block_id * block_size; int end = min(start + block_size, n); for (int i = start; i < end; i++) blocks[block_id].push_back(a[i]); sort(blocks[block_id].begin(), blocks[block_id].end()); } void range_add(int l, int r, int c) { int block_l = l / block_size, block_r = r / block_size; if (block_l == block_r) { // 同一块内 for (int i = l; i <= r; i++) a[i] += c; rebuild_block(block_l); } else { // 左侧碎块 for (int i = l; i < (block_l + 1) * block_size; i++) a[i] += c; rebuild_block(block_l); // 中间整块 for (int i = block_l + 1; i < block_r; i++) add_tag[i] += c; // 右侧碎块 for (int i = block_r * block_size; i <= r; i++) a[i] += c; rebuild_block(block_r); } } int query_predecessor(int l, int r, int c) { int ans = -1; int block_l = l / block_size, block_r = r / block_size; // 左侧碎块暴力查询 for (int i = l; i < min(r + 1, (block_l + 1) * block_size); i++) { int val = a[i] + add_tag[block_l]; if (val < c && val > ans) ans = val; } // 中间整块二分查找 for (int i = block_l + 1; i < block_r; i++) { int target = c - add_tag[i]; auto it = lower_bound(blocks[i].begin(), blocks[i].end(), target); if (it != blocks[i].begin()) { it--; int val = *it + add_tag[i]; if (val < c && val > ans) ans = val; } } // 右侧碎块暴力查询 if (block_l != block_r) { for (int i = block_r * block_size; i <= r; i++) { int val = a[i] + add_tag[block_r]; if (val < c && val > ans) ans = val; } } return ans; } int main() { cin >> n; a.resize(n); for (int i = 0; i < n; i++) cin >> a[i]; init(); for (int i = 0; i < n; i++) { int op, l, r, c; cin >> op >> l >> r >> c; l--; r--; // 转为0-indexed if (op == 0) range_add(l, r, c); else cout << query_predecessor(l, r, c) << endl; } return 0; } ``` #### 算法分析 - **时间复杂度**: - 单次修改/查询:$O(\sqrt{n} \log \sqrt{n})$(碎块排序主导)。 - 总操作 $m$ 次:$O(m \sqrt{n} \log n)$。 - **空间复杂度**:$O(n)$。 #### 优化技巧 1. **减少排序次数**: - 碎块修改时只重构受影响块的有序数组。 2. **块大小调整**: - 实测调整块大小为 $n^{0.6}$ 可能更快(需测试)。 #### 应用场景 分块算法适用于**强制在线**的区间问题(如 LOJ 的数列分块系列题),在 $O(\sqrt{n})$ 复杂度下平衡修改与查询[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值