E - Strategic Game (HDU - 1054 )(最小顶点覆盖)(匈牙利算法模板)(树形DP)

博客讲述了如何利用匈牙利算法和树形DP解决最小顶点覆盖问题,以帮助鲍勃在战略游戏中防御城市。文章解释了最小顶点覆盖的概念,König定理,以及如何将树转化为二分图。还提供了匈牙利算法的资源链接和树形DP的状态转移方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:鲍勃喜欢玩电脑游戏,特别是战略游戏,但有时他无法找到解决方案,速度不够快,那么他很伤心。现在,他有以下的问题。他必须捍卫一个中世纪的城市,形成了树的道路。他把战士的最低数量的节点上,使他们可以观察所有的边。你能帮助他吗?士兵,鲍勃把一个给定的树,你的程序应该发现的最小数目。输入文件包含多个数据集的文本格式。

我们来先了解一下什么是最小顶点覆盖;

 

G顶点覆盖是一个顶点集合V,使得G中的每一条边都接触V中的至少一个顶点。我们称集合V覆盖了G的边。最小顶点覆盖是用最少的顶点来覆盖所有的边。顶点覆盖数\tau是最小顶点覆盖的大小。

相应地,图G边覆盖是一个边集合E,使得G中的每一个顶点都接触E中的至少一条边。

如果只说覆盖,则通常是指顶点覆盖,而不是边覆盖。

 

由König定理定理可知,二分图的最小顶点覆盖数等于二分图的最大匹配数。

关于König定理的证明网上也比较多。大家可以百度找一找。题目中的这棵树之所以可以当成二分图,是因为如果从一个点出发,那么可以将整棵树分成奇数点层和偶数点层。由于树是一种特殊的图。n个点由(n-1)条边连接起来。这样假定一个点为树的根,假设各点间的边权值为1。那么从树根出发遍历整棵树,根据各点到根的路径的奇偶性即可将所有点分成两个集合。奇数点与偶数点交替出现。假设奇数点与偶数点连边,偶数点则继续和下一层的奇数点连边。这就与二分图中同类集合点间无边,不同类集合点间有边相连吻合起来了。所以满足二分图的性质。也可以用二分图最大匹

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值