codeforces1215D Ticket Game

问题链接(https://codeforces.com/problemset/problem/1215/D)

问题描述

一张票有n位数,如果这张票的前一半数字的和等于后一半数字的和(n一定是偶数),就称这张票为快乐票。有些数被擦除了,标记为’?’(’?‘的个数也是偶数),现在Monocarp 和 Bicarp 进行一个游戏,两人轮流将’?'变换成0到9的任意一个数,Monocarp先手,如果最后票为快乐票则Bicarp赢,否则Monocarp赢。

问题分析

先分别获取两部分非擦除数的和v1、v2,以及两半数中’?‘的个数cnt1、cnt2。并可以用v1、v2中大的数减小的数得到x,因问题都是对称的,所以不妨设v1>=v2,记x=v1-v2。那么问题统一为:前一半数的和为x+cnt1个’?’(值可不一,下同),后一半数的和为cnt2个’?’。
现分析以下几种情况:
若cnt1==cnt2,则M(简略表述,M代表Monocarp,B代表Bicarp)可以先对左边的’?'变9,接着无论B怎么操作,M只需要在B的操作完的那一半数的另一半数做相同的操作,就可以保证最后操作结果左边等于右边(不考虑x),也就是最后左边会比右边多一个x,所以这种情况B赢的条件是x为0,当然x为0时,B也是只需要模仿M的操作就可以使两边相等了。
若cnt1>cnt2,M在前一半不断加9,或在后一半不断加0,即使是不考虑x,B无论怎么操作也不能使两半相等。
若cnt1<cnt2,x必须等于a=9×(cnt2-cnt1)÷2,B才能让前后两半相等。如果x比a大,那么M还是可以通过在前一半加9或者后一半加0的方式让最终前一半的和比后一半的和大,因为B只能在对应的另一半加9、加0,但也无济于事。同理如果x比a小,那么M可以通过在前一半加0或者后一半加9的方式让最后前一半比后一半小。

代码如下

#include<bits/stdc++.h>
using namespace std;
const int N=2e5+5;

#define endl '\n'

char str[N]; 

int main(){
	ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
	int n,cnt1,cnt2,v1,v2,v;
	cin>>n>>str;
	cnt1=cnt2=v1=v2=0;
	for(int i=0,half=n/2;i<half;i++){
		if(str[i]=='?') cnt1++;
		else v1+=str[i]-'0';
	}
	for(int i=n/2;i<n;i++){
		if(str[i]=='?') cnt2++;
		else v2+=str[i]-'0';
	}
	if(v1<v2){
		swap(v1,v2);
		swap(cnt1,cnt2);
	}
	v=v1-v2;
	if(cnt1==cnt2&&!v) cout<<"Bicarp"<<endl;
	else if(cnt2>cnt1&&v==(cnt2-cnt1)/2*9) cout<<"Bicarp"<<endl;
	else cout<<"Monocarp"<<endl;
	return 0;
}
### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值