Fractions Again?!
It is easy to see that for every fraction in the form 1/k (k > 0), we can always find two positive integers x and y, x >= y, such that:
Now our question is: can you write a program that counts how many such pairs of x and y there are for any given k?
Input
Input contains no more than 100 lines, each giving a value of k (0 < k <= 10000).Output
For each k, output the number of corresponding (x, y) pairs, followed by a sorted list of the values of x and y, as shown in the sample output.Sample Input
212
Sample Output
21/2 = 1/6 + 1/3
1/2 = 1/4 + 1/4
8
1/12 = 1/156 + 1/13
1/12 = 1/84 + 1/14
1/12 = 1/60 + 1/15
1/12 = 1/48 + 1/16
1/12 = 1/36 + 1/18
1/12 = 1/30 + 1/20
1/12 = 1/28 + 1/21
1/12 = 1/24 + 1/24
需要枚举x、y,但是它们在一个什么范围内呢?我们注意到,1/x<=1/y,则1/k-1/y<=1/y,即y<=2*k 我们只需枚举y,再求出x即可。但是需要注意的是求x时,我开始的时候用的是:x=(double)1/(1/k-1/y),结果溢出,因为括号里面仍然是整数的运算显然不对,但是改成x=1/((double)1/K-(double)1/y)之后虽不溢出,结果是错的,因为这里大量运用了除法,精度出了问题。改成x=(double)K*y/(y-K)就通过了,所以计算的时候应该避免进行大量的除法运算。
代码如下:
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=10000+5;
int Y[maxn],X[maxn];
int main()
{
int K;
while(scanf("%d",&K)==1)
{
int count=0;
for(int y=K+1;y<=2*K;y++)
{
double x;
x=(double)K*y/(y-K);
if(x==floor(x))
{
++count;
X[count]=(int)x;
Y[count]=y;
}
}
printf("%d\n",count);
for(int i=1;i<=count;i++)
printf("1/%d = 1/%d + 1/%d\n",K,X[i],Y[i]);
}
return 0;
}