Fractions Again?!

Fractions Again?!

It is easy to see that for every fraction in the form 1/k (k > 0), we can always find two positive integers x and y, x >= y, such that: 
.
Now our question is: can you write a program that counts how many such pairs of x and y there are for any given k?

Input

Input contains no more than 100 lines, each giving a value of k (0 < k <= 10000).

Output

For each k, output the number of corresponding (x, y) pairs, followed by a sorted list of the values of x and y, as shown in the sample output.

Sample Input

2
12

Sample Output

2
1/2 = 1/6 + 1/3
1/2 = 1/4 + 1/4
8
1/12 = 1/156 + 1/13
1/12 = 1/84 + 1/14
1/12 = 1/60 + 1/15
1/12 = 1/48 + 1/16
1/12 = 1/36 + 1/18
1/12 = 1/30 + 1/20
1/12 = 1/28 + 1/21
1/12 = 1/24 + 1/24


需要枚举x、y,但是它们在一个什么范围内呢?我们注意到,1/x<=1/y,则1/k-1/y<=1/y,即y<=2*k 我们只需枚举y,再求出x即可。但是需要注意的是求x时,我开始的时候用的是:x=(double)1/(1/k-1/y),结果溢出,因为括号里面仍然是整数的运算显然不对,但是改成x=1/((double)1/K-(double)1/y)之后虽不溢出,结果是错的,因为这里大量运用了除法,精度出了问题。改成x=(double)K*y/(y-K)就通过了,所以计算的时候应该避免进行大量的除法运算。
代码如下:
#include<cstdio>
#include<cmath>
using namespace std;

const int maxn=10000+5;
int Y[maxn],X[maxn];

int main()
{
	int K;
	while(scanf("%d",&K)==1)
	{
		int count=0;
		for(int y=K+1;y<=2*K;y++)
		{
			double x;
			x=(double)K*y/(y-K);

			if(x==floor(x))
			{
				++count;
				X[count]=(int)x;
				Y[count]=y;
			} 
		}
		printf("%d\n",count);
		for(int i=1;i<=count;i++)
			printf("1/%d = 1/%d + 1/%d\n",K,X[i],Y[i]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值