Pythonic Tricks

本文介绍了一系列Python编程的高级技巧,包括灵活使用*args和**kwargs、高效字符串操作、列表及字典处理技巧、迭代器与生成器的应用、集合操作、默认字典与命名元组的使用、以及Lambda函数的多种应用场景。

以下为了简略,我们用P表示pythonic的写法,NP表示non-pythonic的写法


Python中*args 和**kwargs的用法

def fun_var_args(farg, *args):
    print "arg:", farg
    for value in args:
        print "another arg:", value
 
fun_var_args(1, "two", 3) # *args可以当作可容纳多个变量组成的list
--->
arg: 1
another arg: two
another arg: 3

def fun_var_kwargs(farg, **kwargs):
    print "arg:", farg
    for key in kwargs:
        print "another keyword arg: %s: %s" % (key, kwargs[key])
 
 
fun_var_kwargs(farg=1, myarg2="two", myarg3=3) # myarg2和myarg3被视为key, 感觉**kwargs可以当作容纳多个key和value的dictionary
 -->
 arg: 1
another keyword arg: myarg2: two
another keyword arg: myarg3: 3
 
def fun_var_args_call(arg1, arg2, arg3):
    print "arg1:", arg1
    print "arg2:", arg2
    print "arg3:", arg3
 
args = ["two", 3] #list
 
fun_var_args_call(1, *args)
 -->
 arg1: 1
arg2: two
arg3: 3



get indices of top K in a numpy array

In [1]: import numpy as np

In [2]: arr = np.array([1, 3, 2, 4, 5])

In [3]: arr.argsort()[-3:][::-1]
Out[3]: array([4, 3, 1])

置换两个变量的值。

P

a,b = b,a

NP

temp = a
a = b
b = temp

链式比较

P

a = 3
b = 1 
 
1 <= b <= a < 10  #True

NP

b >= 1 and b <= a and a < 10 #True


真值测试

P

name = 'Tim'
langs = ['AS3', 'Lua', 'C']
info = {'name': 'Tim', 'sex': 'Male', 'age':23 }    
 
if name and langs and info:
    print('All True!')  #All True!

NP

if name != '' and len(langs) > 0 and info != {}:
    print('All True!') #All True!

字符串反转

P

def reverse_str( s ):
    return s[::-1] 

NP

def reverse_str( s ):
    t = ''
    for x in xrange(len(s)-1,-1,-1):
        t += s[x]
    return t

字符串列表的连接

P

strList = ["Python", "is", "good"]  
 
res =  ' '.join(strList) #Python is good

NP

res = ''
for s in strList:
    res += s + ' '
#Python is good 
#最后还有个多余空格

string.join()常用于连接列表里的字符串,相对于NP,P的方式十分高效,且不会犯错。


列表求和,最大值,最小值,乘积

P

numList = [1,2,3,4,5]   
 
sum = sum(numList)  #sum = 15
maxNum = max(numList) #maxNum = 5
minNum = min(numList) #minNum = 1
from operator import mul
prod = reduce(mul, numList, 1) #prod = 120 默认值传1以防空列表报错

NP

sum = 0
maxNum = -float('inf')
minNum = float('inf')
prod = 1
for num in numList:
    if num > maxNum:
        maxNum = num
    if num < minNum:
        minNum = num
    sum += num
    prod *= num
# sum = 15 maxNum = 5 minNum = 1 prod = 120

列表推导式

P

l = [x*x for x in range(10) if x % 3 == 0]
#l = [0, 9, 36, 81]

NP

l = []
for x in range(10):
    if x % 3 == 0:
        l.append(x*x)
#l = [0, 9, 36, 81]

字典的默认值

P

dic = {'name':'Tim', 'age':23}  
 
dic['workage'] = dic.get('workage',0) + 1
#dic = {'age': 23, 'workage': 1, 'name': 'Tim'}

NP

if 'workage' in dic:
    dic['workage'] += 1
else:
    dic['workage'] = 1
#dic = {'age': 23, 'workage': 1, 'name': 'Tim'}

for…else…语句

P

for x in xrange(1,5):
    if x == 5:
        print 'find 5'
        break
else:
    print 'can not find 5!'
#can not find 5!  

NP

find = False
for x in xrange(1,5):
    if x == 5:
        find = True
        print 'find 5'
        break
if not find:
    print 'can not find 5!'
#can not find 5!

for…else…的else部分用来处理没有从for循环中断的情况。有了它,我们不用设置状态变量来检查是否for循环有break出来,简单方便。


三元符的替代

P

a = 3   
 
b = 2 if a > 2 else 1
#b = 2

NP

if a > 2:
    b = 2
else:
    b = 1
#b = 2

Enumerate

P

array = [1, 2, 3, 4, 5]
 
for i, e in enumerate(array,0):
    print i, e
#0 1
#1 2
#2 3
#3 4
#4 5

NP

for i in xrange(len(array)):
    print i, array[i]
#0 1
#1 2
#2 3
#3 4
#4 5

使用enumerate可以一次性将索引和值取出,避免使用索引来取值,而且enumerate的第二个参数可以调整索引下标的起始位置,默认为0。


使用zip创建键值对

P

keys = ['Name', 'Sex', 'Age']
values = ['Tim', 'Male', 23]
 
dic = dict(zip(keys, values))
#{'Age': 23, 'Name': 'Tim', 'Sex': 'Male'}

NP

dic = {}
for i,e in enumerate(keys):
    dic[e] = values[i]
#{'Age': 23, 'Name': 'Tim', 'Sex': 'Male'}

##Extended unpacking

>>> a, *b, c = [1, 2, 3, 4, 5]
>>> a
1
>>> b
[2, 3, 4]
>>> c
5

##List slices with negative step

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::-1]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> a[::-2]
[10, 8, 6, 4, 2, 0]

##Zipping

>>> a = [1, 2, 3]
>>> b = ['a', 'b', 'c']
>>> z = zip(a, b)
>>> z
[(1, 'a'), (2, 'b'), (3, 'c')]
>>> zip(*z)
[(1, 2, 3), ('a', 'b', 'c')]

##Sliding windows

>>> from itertools import islice
>>> def n_grams(a, n):
...     z = (islice(a, i, None) for i in range(n))
...     return zip(*z)
...
>>> a = [1, 2, 3, 4, 5, 6]
>>> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
>>> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

##Inverting a dictionary using zip

>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> m.items()
[('a', 1), ('c', 3), ('b', 2), ('d', 4)]
>>> zip(m.values(), m.keys())
[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]
>>> mi = dict(zip(m.values(), m.keys()))
>>> mi
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

######2222222
>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> m
{'d': 4, 'a': 1, 'b': 2, 'c': 3}
>>> {v: k for k, v in m.items()}
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

##Flattening lists

>>> a = [[1, 2], [3, 4], [5, 6]]
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]

>>> sum(a, [])
[1, 2, 3, 4, 5, 6]

>>> [x for l in a for x in l]
[1, 2, 3, 4, 5, 6]

>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> [x for l1 in a for l2 in l1 for x in l2]
[1, 2, 3, 4, 5, 6, 7, 8]

>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]
>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]
>>> flatten(a)
[1, 2, 3, 4, 5, 6, 7, 8]

##Generator

>>> g = (x ** 2 for x in xrange(10))
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> sum(x ** 3 for x in xrange(10))
2025
>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)
408

##Named tuples

>>> Point = collections.namedtuple('Point', ['x', 'y'])
>>> p = Point(x=1.0, y=2.0)
>>> p
Point(x=1.0, y=2.0)
>>> p.x
1.0
>>> p.y
2.0

##Inheriting from named tuples

>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):
...     __slots__ = ()
...     def __add__(self, other):
...             return Point(x=self.x + other.x, y=self.y + other.y)
...
>>> p = Point(x=1.0, y=2.0)
>>> q = Point(x=2.0, y=3.0)
>>> p + q
Point(x=3.0, y=5.0)

##Sets

>>> A = {1, 2, 3, 3}
>>> A
set([1, 2, 3])
>>> B = {3, 4, 5, 6, 7}
>>> B
set([3, 4, 5, 6, 7])
>>> A | B
set([1, 2, 3, 4, 5, 6, 7])
>>> A & B
set([3])
>>> A - B
set([1, 2])
>>> B - A
set([4, 5, 6, 7])
>>> A ^ B
set([1, 2, 4, 5, 6, 7])
>>> (A ^ B) == ((A - B) | (B - A))
True

##Multisets

>>> A = collections.Counter([1, 2, 2])
>>> B = collections.Counter([2, 2, 3])
>>> A
Counter({2: 2, 1: 1})
>>> B
Counter({2: 2, 3: 1})
>>> A | B
Counter({2: 2, 1: 1, 3: 1})
>>> A & B
Counter({2: 2})
>>> A + B
Counter({2: 4, 1: 1, 3: 1})
>>> A - B
Counter({1: 1})
>>> B - A
Counter({3: 1})

##Most common

>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
>>> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
>>> A.most_common(1)
[(3, 4)]
>>> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]

##Double-ended queue

>>> Q = collections.deque()
>>> Q.append(1)
>>> Q.appendleft(2)
>>> Q.extend([3, 4])
>>> Q.extendleft([5, 6])
>>> Q
deque([6, 5, 2, 1, 3, 4])
>>> Q.pop()
4
>>> Q.popleft()
6
>>> Q
deque([5, 2, 1, 3])
>>> Q.rotate(3)
>>> Q
deque([2, 1, 3, 5])
>>> Q.rotate(-3)
>>> Q
deque([5, 2, 1, 3])

##Double-ended queue with maximum length

>>> last_three = collections.deque(maxlen=3)
>>> for i in xrange(10):
...     last_three.append(i)
...     print ', '.join(str(x) for x in last_three)
...
0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
6, 7, 8
7, 8, 9

##Ordered dictionaries

>>> m = dict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
1, 0, 3, 2, 5, 4, 7, 6, 9, 8
>>> m = collections.OrderedDict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))
>>> print ', '.join(m.keys())
10, 9, 8, 7, 6, 5, 4, 3, 2, 1

##Default dictionaries

>>> m = dict()
>>> m['a']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'a'
>>>
>>> m = collections.defaultdict(int)
>>> m['a']
0
>>> m['b']
0
>>> m = collections.defaultdict(str)
>>> m['a']
''
>>> m['b'] += 'a'
>>> m['b']
'a'
>>> m = collections.defaultdict(lambda: '[default value]')
>>> m['a']
'[default value]'
>>> m['b']
'[default value]'

##Using default dictionaries to represent simple trees

>>> import json
>>> tree = lambda: collections.defaultdict(tree)
>>> root = tree()
>>> root['menu']['id'] = 'file'
>>> root['menu']['value'] = 'File'
>>> root['menu']['menuitems']['new']['value'] = 'New'
>>> root['menu']['menuitems']['new']['onclick'] = 'new();'
>>> root['menu']['menuitems']['open']['value'] = 'Open'
>>> root['menu']['menuitems']['open']['onclick'] = 'open();'
>>> root['menu']['menuitems']['close']['value'] = 'Close'
>>> root['menu']['menuitems']['close']['onclick'] = 'close();'
>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))
{
    "menu": {
        "id": "file",
        "menuitems": {
            "close": {
                "onclick": "close();",
                "value": "Close"
            },
            "new": {
                "onclick": "new();",
                "value": "New"
            },
            "open": {
                "onclick": "open();",
                "value": "Open"
            }
        },
        "value": "File"
    }
}

##Cartesian products

>>> for p in itertools.product([1, 2, 3], [4, 5]):
(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)
>>> for p in itertools.product([0, 1], repeat=4):
...     print ''.join(str(x) for x in p)
...
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

##Combinations

>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):
...     print ''.join(str(x) for x in c)
...
123
124
125
134
135
145
234
235
245
345
>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):
...     print ''.join(str(x) for x in c)
...
11
12
13
22
23
33

##groupby

>>> from operator import itemgetter
>>> import itertools
>>> with open('contactlenses.csv', 'r') as infile:
...     data = [line.strip().split(',') for line in infile]
...
>>> data = data[1:]
>>> def print_data(rows):
...     print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)
...

>>> print_data(data)
young               myope                   no                      reduced                 none
young               myope                   no                      normal                  soft
young               myope                   yes                     reduced                 none
young               myope                   yes                     normal                  hard
young               hypermetrope            no                      reduced                 none
young               hypermetrope            no                      normal                  soft
young               hypermetrope            yes                     reduced                 none
young               hypermetrope            yes                     normal                  hard
pre-presbyopic      myope                   no                      reduced                 none
pre-presbyopic      myope                   no                      normal                  soft
pre-presbyopic      myope                   yes                     reduced                 none
pre-presbyopic      myope                   yes                     normal                  hard
pre-presbyopic      hypermetrope            no                      reduced                 none
pre-presbyopic      hypermetrope            no                      normal                  soft
pre-presbyopic      hypermetrope            yes                     reduced                 none
pre-presbyopic      hypermetrope            yes                     normal                  none
presbyopic          myope                   no                      reduced                 none
presbyopic          myope                   no                      normal                  none
presbyopic          myope                   yes                     reduced                 none
presbyopic          myope                   yes                     normal                  hard
presbyopic          hypermetrope            no                      reduced                 none
presbyopic          hypermetrope            no                      normal                  soft
presbyopic          hypermetrope            yes                     reduced                 none
presbyopic          hypermetrope            yes                     normal                  none

>>> data.sort(key=itemgetter(-1))
>>> for value, group in itertools.groupby(data, lambda r: r[-1]):
...     print '-----------'
...     print 'Group: ' + value
...     print_data(group)
...
-----------
Group: hard
young               myope                   yes                     normal                  hard
young               hypermetrope            yes                     normal                  hard
pre-presbyopic      myope                   yes                     normal                  hard
presbyopic          myope                   yes                     normal                  hard
-----------
Group: none
young               myope                   no                      reduced                 none
young               myope                   yes                     reduced                 none
young               hypermetrope            no                      reduced                 none
young               hypermetrope            yes                     reduced                 none
pre-presbyopic      myope                   no                      reduced                 none
pre-presbyopic      myope                   yes                     reduced                 none
pre-presbyopic      hypermetrope            no                      reduced                 none
pre-presbyopic      hypermetrope            yes                     reduced                 none
pre-presbyopic      hypermetrope            yes                     normal                  none
presbyopic          myope                   no                      reduced                 none
presbyopic          myope                   no                      normal                  none
presbyopic          myope                   yes                     reduced                 none
presbyopic          hypermetrope            no                      reduced                 none
presbyopic          hypermetrope            yes                     reduced                 none
presbyopic          hypermetrope            yes                     normal                  none
-----------
Group: soft
young               myope                   no                      normal                  soft
young               hypermetrope            no                      normal                  soft
pre-presbyopic      myope                   no                      normal                  soft
pre-presbyopic      hypermetrope            no                      normal                  soft
presbyopic          hypermetrope            no                      normal                  soft

##Chaining iterables

>>> a = [1, 2, 3, 4]
>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):
...     print p
...
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))
...     print subset
...
()
(1,)
(2,)
(3,)
(4,)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
(1, 2, 3, 4)

##Permutations


>>> for p in itertools.permutations([1, 2, 3, 4]):
...     print ''.join(str(x) for x in p)
...
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321

Python中“=”、切片、copy和deepcopy

"=" 一般意义的复制
我们所说的一般意义的“等于号“相当于引用,即原始队列改变,被赋值的队列也会作出相同的改变。
直接赋值,传递对象的引用而已,原始列表改变,被赋值的b也会做相同的改变

这里写图片描述

列表切片
Python中列表切片是深拷贝,即被复制的对象作为一个一个新的个体独立存在,任意改变其一不会对另一个对象造成影响。

这里写图片描述

Python中的copy
copy是浅拷贝,并不会产生一个独立的对象单独存在,他只是将原有的数据块打上一个新标签,所以当其中一个标签被改变的时候,数据块就会发生变化,另一个标签也会随之改变。这就和我们寻常意义上的复制有所不同了。
这里需要注意,对于简单对象来说,深拷贝、浅copy并没有区分,改变原始队列,赋值队列并不会改变。
但是对于嵌套队列来说,改变了子对象的值,浅拷贝会随之变化,深拷贝不会。

这里写图片描述

深拷贝 deepcopy
Python中的copy动作,对于一个复杂对象的子对象并不会完全复制,什么是复杂对象的子对象呢?就比如序列里的嵌套序列,字典里的嵌套序列等都是复杂对象的子对象。
对于子对象,浅拷贝动作会把它当作一个公共镜像存储起来,所有对他的复制都被当成一个引用,所以说当其中一个引用将镜像改变了之后另一个引用使用镜像的时候镜像已经被改变了。
对于子对象,深拷贝动作会将复杂对象的每一层复制一个单独的个体出来,因而二者完全独立。

这里写图片描述


lamda函数

Lambda函数,是一个匿名函数,创建语法:
lambda parameters:express
parameters:可选,如果提供,通常是逗号分隔的变量表达式形式,即位置参数。
expression:不能包含分支或循环(但允许条件表达式),也不能包含return(或yield)函数。如果为元组,则应用圆括号将其包含起来。
调用lambda函数,返回的结果是对表达式计算产生的结果。

#以下两种方法等价,都可以通过调用area(5,3),结果相同
>>> area=lambda b,h:0.5*b*h
>>> def area(b,h):
    return 0.5*b*h

根据参数是否为1 决定s为yes还是no
>>> s = lambda x:"yes" if x==1 else "no"
>>> s(0)
'no'
>>> s(1)
'yes'
#使用sorted()方法和list.sort()方法进行排序
>>> elements=[(2,12,"A"),(1,11,"N"),(1,3,"L"),(2,4,"B")]
>>> sorted(elements)
[(1, 3, 'L'), (1, 11, 'N'), (2, 4, 'B'), (2, 12, 'A')]
 
#根据elements每个元组后两项进行排序,e表示列表中每个三元组元素
#在表达式是元组,且lambda为一个函数的参数时,lambda表达式的圆括号是必需的
>>> elements.sort(key=lambda e:(e[1],e[2]))
>>> elements
[(1, 3, 'L'), (2, 4, 'B'), (1, 11, 'N'), (2, 12, 'A')]
 
#分片方式得到同样的效果
>>> elements.sort(key=lambda e:e[1:3])
>>> elements
[(1, 3, 'L'), (2, 4, 'B'), (1, 11, 'N'), (2, 12, 'A')]

# 对字典按值排序
sold_sums = sorted(sold_sums.items(),key = lambda d:d[1] , reverse=True) #按从大到小
id_means = sorted(id_means.items(),key=lambda  d:d[1]) #按从小到大

# 对多维数组排序
xyz.sort(key=lambda x: (x[1],x[0]))   # 先对第二列,在对第一列
xyz.sort(key=lambda x: (x[0]))

lamda函数使用场景

#1.函数式编程:
例如:一个整数列表,要求按照列表中元素的绝对值大小升序排列
>>> list1 = [3,5,-4,-1,0,-2,-6]
>>> sorted(list1, key=lambda x: abs(x))
[0, -1, -2, 3, -4, 5, -6]

#排序函数sorted支持接收一个函数作为参数,该参数作为 sorted的排序依据,这里按照列表元素的绝对值进行排序。

当然,我也可以用普通函数来实现:
>>> def foo(x):
...     return abs(x)
...
>>> sorted(list1, key=foo)
[0, -1, -2, 3, -4, 5, -6]
#只不过是这种方式代码看起来不够 Pythonic 而已。

#lambda:这是Python支持一种有趣的语法,它允许你快速定义单行的最小函数,可以用在任何需要函数的地方:
>>> add = lambda x,y : x+y
>>> add(5,6)
>>> (lambda x,y:x+y)(5,6)
#2.Python中最常见的filter筛选、map小刷子、reduce合并,都可以用lambda表达式来生成!
#对于序列来讲,有三个函数式编程工具: filter()、map()和reduce()。

#map(function,sequence):把sequence中的值当参数逐个传给function,返回一个包含函数执行结果的list。
#求1~20的平方
>>> list(map(lambda x:x*x,range(1,21))) #Python2.x使用map(lambda x:x*x,range(1,21))
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400]

#如果function有两个参数,即map(function,sequence1,sequence2)。
>>> list(map(lambda x,y:x+y,range(8),range(8)))
[0, 2, 4, 6, 8, 10, 12, 14]
>>> list(map(lambda x,y:x*y,range(8),range(8)))
[0, 1, 4, 9, 16, 25, 36, 49]

#filter(function,sequence):对sequence中的item依次执行function(item),将执行结果为True的item组成一个List/String/Tuple(取决于sequence的类型)返回。
 
#求1~20之间的偶数
>>> list(filter(lambda x:x%2 == 0,range(1,21))) #Python2.x使用filter(lambda x:x%2 == 0,range(1,21))
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

#reduce(function,sequence):function接收的参数个数只能为2,先把sequence中第一个值和第#二个值当参数传给function,再把function的返回值和第三个值当参数传给function,然后只返回一个结果。
 
#求1~100之和
>>> from functools import reduce          #Python3.x之后需要导入reduce模块
>>> reduce(lambda x,y:x+y,range(1,101))

#求1~100之和,再加上10000
>>> reduce(lambda x,y:x+y,range(1,101),10000)
#3.闭包
#闭包:一个定义在函数内部的函数,闭包使得变量即使脱离了该函数的作用域范围也依然能被访问到。

#来看一个用lambda函数作为闭包的例子。
>>> def add(n):
...     return lambda x:x+n
...
>>> add2 = add(5)
>>> add2(15)

#这里的lambda函数就是一个闭包,在全局作用域范围中,add2(15)可以正常执行且返回值为20。之所以返回20是因为在add局部作用域中,变量n的值在闭包的作用使得它在全局作用域也可以被访问到。

#换成常规函数也可以实现闭包,只不过是这种方式稍显啰嗦。

>>> def my_add(n):
...     def wrapper(x):
...         return x+n
...     return wrapper
...
>>> add_5 = my_add(5)
>>> add_5(2)
7

zen of python 中有这样一句话是 Explicit is better than implicit(明了胜于晦涩)。记住,如果用 lambda 函数不能使你的代码变得更清晰时,这时你就要考虑使用常规的方式来定义函数。


filter map

  squares = map(lambda x: x**2, range(10))
  special_squares = filter(lambda x: x > 5 and x < 50, squares)
# 等价于
special_squares = [ x**2 for x in range(10) if x**2 > 5 and x**2 < 50 ]

reduce

import functools
functools.reduce(lambda x,y: x+y, [47,11,42,13])
113

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值