二叉搜索树

本文详细介绍了二叉搜索树的基本性质及其在提高搜索效率方面的重要作用,并提供了具体的代码实现,包括节点插入、查找、删除等核心操作。

二叉搜索树性质:

  1. 每个节点都有一个作为搜索依据的关键码(key),所有节点的关键码互不相同。
  2. 左子树上所有节点的关键码(key)都小于根节点的关键码(key)。
  3. 右子树上所有节点的关键码(key)都大于根节点的关键码(key)。
  4. 左右子树都是二叉搜索树。
二叉搜索树大大提高了搜索目标树的效率。


代码实现:

/*BSTree.h*/
#include <iostream>
using namespace std;

template <class K, class V>
struct BSTreeNode
{
	typedef BSTreeNode<K, V> Node;

	K _key;
	V _value;

	Node* _left;
	Node* _right;

	BSTreeNode(const K& key, const V& value)
		:_key(key)
		,_value(value)
		,_left(NULL)
		,_right(NULL)
	{}
};

template <class K, class V>
class BSTree
{
	typedef BSTreeNode<K, V> Node;
public:
	BSTree()
		:_root(NULL)
	{}
public:
	bool Insert(const K& key, const V& value)
	{
		if(_root == NULL)
			_root = new Node(key, value);

		Node* cur = _root;
		while(cur)
		{
			if(cur->_key > key)	//key小,插入左子树
			{
				if(cur->_left == NULL)
					cur->_left = new Node(key, value);
				else
					cur = cur->_left;
			}
			else if(cur->_key < key) //key大,插入右子树
			{
				if (cur->_right == NULL)
					cur->_right = new Node(key, value);
				else
					cur = cur->_right;
			}
			else
			{
				return false;
			}
		}
		return true;
	}
	Node* Find(const K& key)
	{
		if(_root == NULL)
		{
			return NULL;
		}

		Node* cur = _root;
		while(cur) 
		{
			if(key > cur->_key)	//key大,走右子树
			{
				cur = cur->_right;
			}
			else if(key < cur->_key) //key小,走左子树
			{
				cur= cur->_left;
			}
			else
			{
				return cur;
			}
		}
		return NULL;
	}
	bool Remove(const K& key)
	{
		if(_root == NULL)	//无节点
		{
			return false;
		}
		else if(_root->_left == NULL && _root->_right == NULL)	//一个节点
		{
			if(_root->_key == key)	//key值正好是_root->_key,直接删除
			{
				delete _root;
				_root = NULL;
				return true;
			}
			else
			{
				return false;
			}
		}
		else //两个及两个以上节点
		{
			Node* cur = _root;
			Node* parent = NULL;
			while(cur)	//找到key
			{
				if(key > cur->_key)//key大,走右子树
				{
					parent = cur;
					cur = cur->_right;
				}
				else if(key < cur->_key)//key小,走左子树	
				{
					parent = cur;
					cur = cur->_left;
				}
				else //找到key了
				{
					Node* del = cur;
					if(cur->_left == NULL)	//如果cur左子树为空,链上右子树
					{   //当cur的父亲为空时,证明cur为根,直接将将根节点指向右子树
						if(parent == NULL)	
						{
							_root = cur->_right;
						}
						//不为空时,确定父亲的左右是cur,然后将右树链到确定好的父亲的孩子上
						else
						{
							if(parent->_left == cur)
								parent->_left = cur->_right;
							else
								parent->_right = cur->_right;
						}
					}
					else if(cur->_right == NULL) //如果cur右子树为空,链上左子树
					{   //当cur的父亲为空时,证明cur为根,直接将根节点指向左子树
						if(parent == NULL)
						{
							_root = cur->_left;
						}
						//不为空时,确定父亲的左右是cur,然后将左树链到确定好的父亲的孩子上
						else
						{
							if(parent->_left == cur)
								parent->_left = cur->_left;
							else
								parent->_right = cur->_left;
						}
					}
					else //左右子树都不为空
					{
						parent = cur;
						//找右子树的最左节点
						//与cur进行交换,删除右子树最左节点,将右子树最左节点的右孩子链到parent
						Node* firstLeft = cur->_right;
						//当firstLeft不为空且它的左孩子不为空时,进去,将来while()循环结束时
						//firstLeft就是右树的最左节点
						while(firstLeft != NULL && firstLeft->_left != NULL)
						{
							parent = firstLeft;
							firstLeft = firstLeft->_left;
						}
						del = firstLeft;
						//交换
						swap(firstLeft->_key, cur->_key);
						swap(firstLeft->_value, cur->_value);
						//链接
						if(parent->_left == firstLeft)
							parent->_left = firstLeft->_right;
						else
							parent->_right = firstLeft->_right;

						
					}
					//删除
					delete del;
					del = NULL;
					return true;
					
				}
			}
			return false;
		}
	}
	void InOrder()
	{
		_InOrder(_root);
		cout<<endl;
	}
	bool Empty()
	{
		if(_root == NULL)
		{
			return true;
		}
		return false;
	}
public:
	bool Insert_R(const K& key, const V& value)
	{
		return _Insert_R(_root, key, value);
	}
	Node* Find_R(const K& key)
	{
		return _Find_R(_root, key);
	}
	bool Remove_R(const K& key)
	{
		return _Remove_R(_root, key);
	}
protected:
	//传引用参数,root在递归中就相当于上层的root的左孩子或右孩子
	bool _Remove_R(Node*& root, const K& key)
	{
		if(root == NULL)
		{
			return false;
		}
		
		if(key > root->_key)
			return _Remove_R(root->_right, key);
		else if(key < root->_key)
			return _Remove_R(root->_left, key);
		else
		{
			Node* del = root;
			if(root->_left == NULL)
			{
				root = root->_right;
				delete del;
				del = NULL;
			}
			else if(root->_right == NULL)
			{
				root = root->_left;
				delete del;
				del = NULL;
			}
			else
			{
				Node* firstLeft = root->_right;
				while(firstLeft != NULL && firstLeft->_left != NULL)
				{
					firstLeft = firstLeft->_left;
				}

				swap(firstLeft->_key, root->_key);
				swap(firstLeft->_value, root->_value);
				
				_Remove_R(root->_right, key);
			}
		}
		return false;
	}
	Node* _Find_R(Node* root, const K& key)
	{
		if(root == NULL)
		{
			return NULL;
		}
		else
		{
			if(key > root->_key)
				return _Find_R(root->_right, key);
			else if(key < root->_key)
				return _Find_R(root->_left, key);
			else
				return root;
		}
	}

	bool _Insert_R(Node*& root, const K& key, const V& value)
	{
		if(root == NULL)
		{
			root = new Node(key, value);
			return true;
		}
		else
		{
			if(key > root->_key)	//key大,走右子树
				_Insert_R(root->_right, key, value);
			else if(key < root->_key)	//key小,走左子树
				_Insert_R(root->_left, key, value);
			else
				return false;
		}
	}
	void _InOrder(Node* root)
	{
		if(root == NULL)
			return;
		_InOrder(root->_left);
		cout<<root->_key<<" ";
		_InOrder(root->_right);
	}
private:
	Node* _root;
};


void Test()
{
	BSTree<int, int> bst;
	bst.Insert(3,1);
	bst.Insert(4,1);
	bst.Insert(5,1);
	bst.Insert(2,1);
	bst.Insert(1,1);
	bst.Insert(0,1);
	bst.Insert(6,1);
	bst.Insert(7,1);
	bst.Insert(8,1);
	bst.Insert(9,1);

	cout<<bst.Empty()<<endl;

	bst.InOrder();

	bst.Remove(8);
	bst.InOrder();

	bst.Remove(7);
	bst.InOrder();

	bst.Remove(6);
	bst.InOrder();

	bst.Remove(5);
	bst.InOrder();

	bst.Remove(4);
	bst.InOrder();

	bst.Remove(3);//删除根
	bst.InOrder();

	bst.Remove(2);
	bst.InOrder();

	bst.Remove(1);
	bst.InOrder();

	bst.Remove(0);
	bst.InOrder();

	bst.Remove(9);
	bst.InOrder();

	cout<<bst.Empty()<<endl;
	
}

void Test_R()
{
	BSTree<int, int> bst;
	bst.Insert_R(3,1);
	bst.Insert_R(4,1);
	bst.Insert_R(5,1);
	bst.Insert_R(2,1);
	bst.Insert_R(1,1);
	bst.Insert_R(0,1);
	bst.Insert_R(6,1);
	bst.Insert_R(7,1);
	bst.Insert_R(8,1);
	bst.Insert_R(9,1);

	bst.InOrder();

	cout<<bst.Empty()<<endl;

	bst.Remove_R(8);
	bst.InOrder();

	bst.Remove_R(7);
	bst.InOrder();

	bst.Remove_R(6);
	bst.InOrder();

	bst.Remove_R(5);
	bst.InOrder();

	bst.Remove_R(4);
	bst.InOrder();

	bst.Remove_R(3);//删除根
	bst.InOrder();

	bst.Remove_R(2);
	bst.InOrder();

	bst.Remove_R(1);
	bst.InOrder();

	bst.Remove_R(0);
	bst.InOrder();

	cout<<"Find_R:9?"<<bst.Find_R(9)->_key<<endl;


	bst.Remove_R(9);
	bst.InOrder();

	cout<<bst.Empty()<<endl;

	cout<<bst.Find_R(9)<<endl;	
}
/*BSTree.cpp*/
#pragma once

#include "BSTree.h"

int main()
{
	//Test();<span style="white-space:pre">	</span>//测试非递归
	Test_R();<span style="white-space:pre">	</span>//测试递归
	system("pause");
	return 0;
}

测试非递归结果:



测试递归结果:



可以从二叉搜索树的中序遍历中可以看出他们都是有序的,因而二叉搜索树又被称为排序树。

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值