CAM论文笔记--Learning Deep Features for Discriminative Localization

本文介绍了弱监督学习中如何利用CAM(Class Activation Mapping)进行物体定位。通过将全连接层替换为全局平均池化(GAP),保持网络的定位能力,使用CAM可视化技术展示类别相关特征在图像中的分布,实现分类的同时进行定位。实验表明,虽然弱监督方法的定位性能与全监督相比存在差距,但仍能取得令人满意的定位效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CAM:Learning Deep Features for Discriminative Localization


背景

 论文主要针对图片中不同类别物体定位的弱监督学习问题,提出了基于分类网络的图片识别与定位。
 分类网络如VGGnet和Alexnet等基本由卷积操作对图片的特征进行提取,在网络末端使用全连接层进行信息综合和分类。在监督学习中,分类问题需要带类别标签的数据集,定位问题需要带BBox(BoundingBox)标签的数据集,分别计算预测与真值之间的loss并进行优化,达到网络训练的目的。而对于只提供分类标签的数据集,但需要完成分类和定位两个功能的网络训练时,就属于弱监督学习问题。

论文笔记

 论文中提出,CNN网络中各卷积核除了提取特征外,其实本身已经具有物体检测功能,即使没有单独对物体的位置检测进行监督学习,而这种能力在使用全连接层进行分类的时候会丧失。通过使用GAP(global average pooling)替代全连接层,可以保持网络定位物体的能力,且相对于全连接网络而言参数更少。论文中提出一种CAM(Class Activation Mapping)方法,可以将CNN在分类时使用的分类依据(图中对应的类别特征)在原图的位置进行可视化,并绘制成热图,以此作为物体定位的依据。

1、全连接层和卷积层对空间信息影响

 卷积操作是在空间维度(Spatial Dimension)上进行特征抽提,所以可以保留语义和空间维度上的信息。如图1所示,该图片的分类标签为猫、狗、相机,对于分类为猫的结果而言,卷积之后图片右边内容由于具备更多猫的属性特征,故得到的feature-map激活值更大,而对于分类为狗的结果而言,卷积后图片左边的feature-map激活值更大。故网络在做分类的前向传播过程中,其实已经保留了物体的位置信息。对于全连接层而言,是将得到的feature-map信息进行综合,

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值