一、背景
大数据服务是数据平台建设的基座,随着B站业务的快速发展,其大数据的规模和复杂度也突飞猛进,技术的追求也同样不会有止境。
B站一站式大数据集群管理平台(BMR),在千呼万唤中孕育而生。本文简单介绍BMR的由来、面临的主要矛盾以及如何在变化中求得生存与发展。
下图是截至2024年6月初,统计到B站大数据的服务规模:

大数据所需承载的业务种类愈加繁多,为更好地承接业务场景的诉求,同时提升稳定性要求,我们大数据集群管理平台的建设,经历了以下主要几个阶段:
阶段一(求生存)
聚焦系统环境标准化、服务配置标准化,清扫野蛮成长过程中非标生产留下的债务(层出不穷的奇怪问题)。
快速和花样地迭代姿势,满足业务高速发展诉求。将各服务的安装包、配置纳入版本管理,服务状态有效透出,完成状态管理和分享。同时打通在线业务的门禁管理,快速迭代过程中不失稳定性考量。
(标准化工作嵌入迭代发布、配置发布、灰度发布中,同时支持常用的新增节点、快速部署、节点上下线等能力。管理上支持机器分组、打标、自定义流程、异构配置管理等)
阶段二(追温饱)
- 建设元仓,打通服务间数据互通,实现问题的快速诊断。
- 场景化建设,如:机房迁移所需的大批量、持续性项目,故障自愈能力等。
- 提升覆盖面,边缘场景或非高频变更场景。如:Yarn队列管理、Lable变更、主从切换、HDFS数据迁移、HMS元数据管理等。
阶段三(奔小康)
拥抱云原生,拓展容器化管理能力。更好利用在业务内和业务间的资源,实现降本增效。服务混部、潮汐退避 火力全开,追求更高的利用率的同时降低IT成本支出。
建设容量管理,完善服务的异常预警、风险预测、故障自愈,进一步完善集群自动化运维体系,进一步追赶业务对大数据赋能的预期。
阶段四(共富裕)
强化可观测能力,数据更接近业务视角,自上而下清晰对齐、指引方向。
化被动为主动,从异常监控到故障自愈,再从故障自愈走向故障预测。
极致追求服务质量,度量服务质量、死磕服务质量。
二、面临的挑战
接下来,我将在大数据平台化过程中遇到的典型问题和解决思路分享如下。
2.1、节点一致性问题
在元数据未闭环联动的情况下,一致性无法得到保障。B站的大数据集群当前仍以物理机为主,正在逐步容器化的阶段。大数据服务组件繁多,叠加多版本、混合部署、部分容器化等诸多因素,让元数据一致性的保障工作更加复杂。在完全平台之前,还存在脚本甚至人工操作,状态的变更无法有效闭环。节点遗漏和信息错误的情况时有发生,轻则服务器未有效利用,重

最低0.47元/天 解锁文章
2247

被折叠的 条评论
为什么被折叠?



