POJ2253(Dijkstra简单最短路径)

本文探讨了Frogger游戏中计算两石头间最小跳跃距离的算法,即Frog距离,通过Dijkstra算法找到从Freddy到Fiona石头路径上的最大跳跃距离的最小值,展示了算法实现及样例输入输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Frogger

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 68425 Accepted: 21065

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones. 

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone. 

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4

3
17 4
19 4
18 5

0

Sample Output

Scenario #1
Frog Distance = 5.000

Scenario #2
Frog Distance = 1.414

Source

Ulm Local 1997 

题意:一个池塘里面有n个石头, Freddy 在1号石头上,Fiona 在2号石头上,求1号到2号石头的路径所经过的最长路径的比其他不经过的短。

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#include<queue>
using namespace std;
#define clr(a,b) memset(a,b,sizeof(a))
#define inf      0x3f3f3f3f3f3f
#define MAX_N    2000+2
#define MAX_M    200+5
//所有路径中最大路径中的最小值
struct Stone
{
    int x,y;
} st[MAX_M];
int n;
double maps[MAX_M][MAX_M];
double Dist(int a,int b)
{
    double x=abs(st[a].x-st[b].x);
    double y=abs(st[a].y-st[b].y);
    return sqrt(x*x+y*y);
}
double Dijkstra()
{
    double dis[MAX_M],ans=inf;
    int vis[MAX_M]= {0};
    for(int i=1; i<=n; i++)
    {
        dis[i]=maps[1][i];
    }
    vis[1]=1;
    dis[1]=0;
    for(int k=1; k<n; k++)
    {
        double minn=inf;
        int nu=0;
        for(int i=1; i<=n; i++)
        {
            if(vis[i]==0&&minn>dis[i])
            {
                minn=dis[i];
                nu=i;
            }
        }
        if(nu==0)
        {
            break;
        }
        vis[nu]=1;
        for(int i=1; i<=n; i++)
        {
            if(vis[i]==0&&max(dis[nu],maps[nu][i])<dis[i])
            {
                dis[i]=max(dis[nu],maps[nu][i]);
            }
        }
    }
    return dis[2];
}
int main()
{
    //freopen("data.txt","r",stdin);
    ios::sync_with_stdio(false);
    int k=0;
    while(cin>>n&&n)
    {
        k++;
        for(int i=1; i<=n; i++)
        {
            cin>>st[i].x>>st[i].y;
            for(int j=i-1; j>0; j--)
            {
                double tm=Dist(i,j);
                maps[i][j]=maps[j][i]=tm;
            }
        }
        printf("Scenario #%d\n",k);
        printf("Frog Distance = %.3f\n\n",Dijkstra());
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值