PAT甲级 1152 Google Recruitment (20 分)

该博客介绍了一个编程挑战,即从一个给定的数字中找出连续的K位素数。文章提供了一个C++代码示例,用于解决这个问题,并展示了如何通过遍历和素数检查函数来找到符合条件的素数。在示例输入中,对于205位数字23654987725541023819,找到了第一个23位的素数49877。如果无法找到满足条件的素数,则输出404。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In July 2004, Google posted on a giant billboard along Highway 101 in Silicon Valley (shown in the picture below) for recruitment. The content is super-simple, a URL consisting of the first 10-digit prime found in consecutive digits of the natural constant e. The person who could find this prime number could go to the next step in Google’s hiring process by visiting this website.

prime.jpg

The natural constant e is a well known transcendental number(超越数). The first several digits are: e = 2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921… where the 10 digits in bold are the answer to Google’s question.

Now you are asked to solve a more general problem: find the first K-digit prime in consecutive digits of any given L-digit number.

Input Specification:

Each input file contains one test case. Each case first gives in a line two positive integers: L (≤ 1,000) and K (< 10), which are the numbers of digits of the given number and the prime to be found, respectively. Then the L-digit number N is given in the next line.

Output Specification:

For each test case, print in a line the first K-digit prime in consecutive digits of N. If such a number does not exist, output 404 instead. Note: the leading zeroes must also be counted as part of the K digits. For example, to find the 4-digit prime in 200236, 0023 is a solution. However the first digit 2 must not be treated as a solution 0002 since the leading zeroes are not in the original number.

Sample Input 1:

20 5
23654987725541023819

Sample Output 1:

49877

Sample Input 2:

10 3
2468024680

Sample Output 2:

404
#include <cstdio>
#include <cmath>

using namespace std;
char digit[1005];
int n, m;

bool isPrime(long long n) {
    if (n <= 1) return false;
    long long sqr = (long long) sqrt(1.0 * n);
    for (int i = 2; i <= sqr; ++i) {
        if (n % i == 0)return false;
    }
    return true;
}

long long int toNum(int b, int e) {
    if (e > n) return 1;
    int num = 0;
    for (int i = b; i < e; ++i) {
        num = num * 10 + (digit[i] - '0');
    }
    return num;
}

int main() {
    scanf("%d %d", &n, &m);
    scanf("%s", digit);
    for (int i = 0; i < n; ++i) {
        if (isPrime(toNum(i, i + m))) {
            for (int j = 0; j < m; ++j) {
                printf("%c", digit[i + j]);
            }
            return 0;
        }
    }
    printf("404");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

XdpCs

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值