Nim plus (SG函数)

博客介绍了一种特殊Nim游戏,桌上有n个纸球,两人各有m个可拿纸球数的集合,先拿的Long Long想知道能否获胜。给出了输入输出格式及示例,还指出该问题基本是裸的SG()函数,需注意两人能拿个数不同。

Long Long and Mao Mao both have AKed the new div.1 round in Codeforces tonight, but it’s too early to sleep now. So they decide to play one special Nim game.

In this special nim game, there are n paper balls on the table at the beginning of the game. But unlike some simple nim game, they each have m numbers in a set. They could only take away the number of paper balls which occur in their set. In the end, those who cannot take away any paper ball lose this game.

Long Long takes the first, and he would like to know whether he can win this game, please help him.

Input
The first line contains two positive integers n (1≤n≤5 000) and m (1≤m≤100) — the number of the paper balls and their sets’ size.

The second line contains m positive integers a1,a2,⋯,am (1≤ai<ai+1≤500) — the numbers in Long Long’s set.

The third line contains m positive integers b1,b2,⋯,bm (1≤bi<bi+1≤500) — the numbers in Mao Mao’s set.

Output
Print Long Long nb! if Long Long can secure the victory, and Mao Mao nb! otherwise.

Examples
Input
5 1
6
7
Output
Mao Mao nb!
Input
20 3
3 7 10
2 6 7
Output
Long Long nb!
Note
In the first sample, Long Long can only take 6 paper balls, but there are only 5 remains on the table, so he loses this game.

In the second sample, Long Long could take 10 paper balls first, and 10 remains on the table:

If Mao Mao takes 2 paper balls, Long Long could take another 7 paper balls. Then there is only one paper ball that remains on the table, the winner is Long Long.
If Mao Mao takes 6 or 7 paper balls, Long Long can also take 3 paper balls to make one paper ball or empty left on the table. In this case, the winner is Long Long.

基本上是个裸的SG()函数,只不过两人能拿的个数不相同,注意区分一下

#include <bits/stdc++.h>
using namespace std;
int f[2][105], n, m;
int ans[2][5005];
int SG(int x, int num) {
    if (ans[num][x] != -1) return ans[num][x];
    int vis[5004], i;
    memset(vis, 0, sizeof(vis));
    for (i = 0; i < m; i++) {
        if (x >= f[num][i]) vis[SG(x - f[num][i], 1 - num)] = 1;
    }
    for (i = 0;; i++) {
        if (vis[i] == 0) return ans[num][x] = i;
    }
}
int main() {
    ios::sync_with_stdio(false);
    memset(ans, -1, sizeof(ans));
    cin >> n >> m;
    for (int i = 0; i < m; i++) cin >> f[0][i];
    for (int i = 0; i < m; i++) cin >> f[1][i];
    if (SG(n, 0))
        puts("Long Long nb!");
    else
        puts("Mao Mao nb!");
}

基于NSGA-III算法求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文围绕基于NSGA-III算法的微电网多目标优化调度展开研究,重点介绍了如何利用该先进多目标进化算法解决微电网系统中多个相互冲突的目标(如运行成本最小化、碳排放最低、供电可靠性最高等)的协同优化问题。文中结合Matlab代码实现,详细阐述了NSGA-III算法的基本原理、在微电网调度模型中的建模过程、约束条件处理、目标函数设计以及仿真结果分析,展示了其相较于传统优化方法在求解高维、非线性、多目标问题上的优越性。同时,文档还提供了丰富的相关研究案例和技术支持背景,涵盖电力系统优化、智能算法应用及Matlab仿真等多个方面。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事能源优化领域的工程技术人员;尤其适合正在进行微电网调度、多目标优化算法研究或撰写相关论文的研究者。; 使用场景及目标:①掌握NSGA-III算法的核心思想及其在复杂能源系统优化中的应用方式;②学习如何构建微电网多目标调度模型并利用Matlab进行仿真求解;③为科研项目、毕业论文或实际工程提供算法实现参考和技术支撑。; 阅读建议:建议读者结合文中提供的Matlab代码实例,逐步调试运行并深入理解算法流程与模型构建细节,同时可参考文档中列出的其他优化案例进行横向对比学习,以提升综合应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值