题目描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
分析:
f(1) = 1
f(2) = f(2-1) + f(2-2)
f(3) = f(3-1) + f(3-2) + f(3-3)
...
f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)
f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)
f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)
可以得出:
f(n) = 2*f(n-1)
思路一:递归
public class Solution {
public int JumpFloorII(int target) {
if (target <= 2) return target;
else return 2 * JumpFloorII(target - 1);
}
}
思路二:递推
public class Solution {
public int JumpFloorII(int target) {
int f = 1;
int fn = 1;
if (target <= 2) return target;
else
{
for (int i = 2; i <= target; i++)
{
fn = 2 * f;
f = fn;
}
}
return fn;
}
}