Mod Tree
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3908 Accepted Submission(s): 1018
Problem Description

The picture indicates a tree, every node has 2 children.
The depth of the nodes whose color is blue is 3; the depth of the node whose color is pink is 0.
Now out problem is so easy, give you a tree that every nodes have K children, you are expected to calculate the minimize depth D so that the number of nodes whose depth is D equals to N after mod P.
Input
The input consists of several test cases.
Every cases have only three integers indicating K, P, N. (1<=K, P, N<=10^9)
Every cases have only three integers indicating K, P, N. (1<=K, P, N<=10^9)
Output
The minimize D.
If you can’t find such D, just output “Orz,I can’t find D!”
If you can’t find such D, just output “Orz,I can’t find D!”
Sample Input
3 78992 453 4 1314520 65536 5 1234 67
Sample Output
Orz,I can’t find D! 8 20
Author
AekdyCoin
Source
转换一下就变成A^x=B(mod C)的问题,需要注意的是B>=0&&B<=C-1,若B不在此范围,则无解。
另外注意,如果你粘贴Orz,I can’t find D!就会WA到死,就是这么坑。
//1544K 125MS
#include<stdio.h>
#include<cmath>
#define Maxn 65535
struct hash
{
int a,b,next;
}Hash[Maxn*2];
int flg[Maxn+66];
int top,idx;
void ins(int a,int b)
{
int k=b&Maxn;
if(flg[k]!=idx)
{
flg[k]=idx;
Hash[k].next=-1;
Hash[k].a=a;
Hash[k].b=b;
return;
}
while(Hash[k].next!=-1)
{
if(Hash[k].b==b)return;
k=Hash[k].next;
}
Hash[k].next=++top;
Hash[top].next=-1;
Hash[top].a=a;
Hash[top].b=b;
}
int find(int b)
{
int k=b&Maxn;
if(flg[k]!=idx)return -1;
while(k!=-1)
{
if(Hash[k].b==b)return Hash[k].a;
k=Hash[k].next;
}
return -1;
}
int gcd(int a,int b)
{
return b==0?a:gcd(b,a%b);
}
int ex_gcd(int a,int b,int& x,int& y)
{
int t,ret;
if(!b){x=1,y=0;return a;}
ret=ex_gcd(b,a%b,x,y);
t=x,x=y,y=t-a/b*y;
return ret;
}
int Inval(int a,int b,int n)
{
int x,y,e;
ex_gcd(a,n,x,y);
e=(long long)x*b%n;
return e<0?e+n:e;
}
int pow_mod(long long a,int b,int c)
{
long long ret=1%c;a%=c;
while(b)
{
if(b&1){ret=ret*a%c;}
a=a*a%c;
b>>=1;
}
return ret;
}
int BabyStep(int A,int B,int C)
{
top=Maxn;++idx;
long long buf=1%C,D=buf,K;
int i,d=0,tmp;
for(i=0;i<100;buf=buf*A%C,++i)
if(buf==B)return i;
while((tmp=gcd(A,C))!=1)
{
if(B%tmp)return -1;
++d;
C/=tmp;
B/=tmp;
D=D*A/tmp%C;
}
int M=(int)ceil(sqrt(C*1.0));
for(buf=1%C,i=0;i<=M;buf=buf*A%C,++i)ins(i,buf);
for(i=0,K=pow_mod((long long)A,M,C);i<=M;D=D*K%C,++i)
{
tmp=Inval((int)D,B,C);int w;
if(tmp>=0&&(w=find(tmp))!=-1)
return i*M+w+d;
}
return -1;
}
int main()
{
int a,b,c;
while(scanf("%d%d%d",&a,&c,&b)!=EOF)
{
if(b>c){printf("Orz,I can’t find D!\n");continue;}
b%=c;
int ans=BabyStep(a,b,c);
if(ans==-1)printf("Orz,I can’t find D!\n");
else printf("%d\n",ans);
}
return 0;
}