ZOJ 3328 Wu Xing (五行相生相克找关系)

本文探讨了一个关于图论的问题,即在一个具有N个节点的图中,为了确保任意两个节点间至少存在一种连接方式,所需的最少交互类型数量。文章通过分析得出结论,并给出了一种简洁的解决方案。
点击打开链接

Wu Xing

Time Limit: 1 Second      Memory Limit: 32768 KB

Introduction

The Wu Xing, or the Five Movements, Five Phases or Five Steps/Stages, are chiefly an ancient mnemonic device, in many traditional Chinese fields.

The doctrine of five phases describes two cycles, a generating or creation cycle, also known as "mother-son", and an overcoming or destruction cycle, also known as "grandfather-nephew", of interactions between the phases.

Generating:

  • Wood feeds Fire;
  • Fire creates Earth (ash);
  • Earth bears Metal;
  • Metal carries Water (as in a bucket or tap, or water condenses on metal);
  • Water nourishes Wood.

Overcoming:

  • Wood parts Earth (such as roots) (or Trees can prevent soil erosion );
  • Earth absorbs (or muddies) Water (or Earth dam control the water);
  • Water quenches Fire;
  • Fire melts Metal;
  • Metal chops Wood.

Wu Xing

With the two types of interactions in the above graph, any two nodes are connected by an edge.

Problem

In a graph with N nodes, to ensure that any two nodes are connected by at least one edge, how many types of interactions are required at least? Here a type of interaction should have the following properties:

  • It can be represented as a set of directed edges in the graph.
  • For each type of interaction, there should be one and only one edge starting at each node.
  • For each type of interaction, there should be one and only one edge ending at each node.
  • The interactions are made up of cycles, i.e. starting from an arbitrary node and following the edges with the same type of interaction, you can always reach the starting node after several steps.

Input

For each test case, there's a line with an integer N (3 <= N < 1,000,000), the number of nodes in the graph.

N = 0 indicates the end of input.

Output

For each test case, output a line with the number of interactions that are required at least.

Sample Input

5
0

Sample Output

2

Reference

http://en.wikipedia.org/wiki/Wu_Xing


Author: XIAO, Dong
Source: The 7th Zhejiang Provincial Collegiate Programming Contest

知道规律的一步就出来了,像我这种不知道规律的画图画到天黑也出不来。
------------------------------------华丽的分割线---------------------------------------
我们可以看到,他说要是任意两个点都有联系,看到这里,马上可以想到,要满足这个条件, 必须需要n*(n-1)/2条边,于是,换一种思考,该题目就可以理解为,在n*(n-1)/2条边中可以构成几个环。如果想到这里,你又开始去画点画边,那估计最后结果还是要悲剧。至少我是画不出,就算画出了也不知道到底是否是最小个数的环。 所以我们接着继续分析。。。抛开怎么连线不管, 往整体方向想,要构成一个环, n个点必须要n条边,可以理解,最终所有环所构成的边,都不会超过n*(n-1)/2条边。 所以每条边都在一个或几个环内,(其中不同的环可以共用一条边)。 所以至少有(n-1)/2个环, 如果可以整除,那么商就是答案。如果不能整除呢? 那么余下的边必定可以再组成一个环(必定的嘛)。所以如果(n-1)%2 != 0, 那么答案就等于(n-1)/2 +1;结果就是和n/2的结果一样,如果有些同学,开玩笑地试了这个公式,恭喜你,你ac了。(踩到狗屎了,呵呵!)

#include<stdio.h>
int main()
{
    int n;
    while(scanf("%d",&n),n)
    {
        printf("%d\n",n/2);
    }
    return 0;
}



评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值