机器学习4:——Pandas——4:高级处理1:缺失值处理

一.高级处理

1.缺失值处理

学习目标

  • 目标
    • 说明Pandas的缺失值类型
    • 应用replace实现数据的替换
    • 应用dropna实现缺失值的删除
    • 应用fillna实现缺失值的填充
    • 应用isnull判断是否有缺失数据NaN
  • 应用
    • 对电影数据进行缺失值处理

在这里插入图片描述

1 如何处理nan

  • 判断数据是否为NaN:
    • pd.isnull(df),
    • pd.notnull(df)
  • 处理方式:
    • 存在缺失值nan,并且是np.nan:
      • 1、删除存在缺失值的:dropna(axis=‘rows’)
        • 注:不会修改原数据,需要接受返回值
      • 2、替换缺失值:fillna(value, inplace=True)
        • value:替换成的值
        • inplace:True:会修改原数据,False:不替换修改原数据,生成新的对象
    • 不是缺失值nan,有默认标记的

2 电影数据的缺失值处理

  • 电影数据文件获取
# 读取电影数据
movie = pd.read_csv("./data/IMDB-Movie-Data.csv")
989    Martyrs    Horror    A young woman's quest for revenge against the ...    Pascal Laugier    Morjana Alaoui, Mylène Jampanoï, Catherine Bég...    2008    99    7.1    63785    NaN    89.0
990    Selma    Biography,Drama,History    A chronicle of Martin Luther King's campaign t...    Ava DuVernay    David Oyelowo, Carmen Ejogo, Tim Roth, Lorrain...    2014    128    7.5    67637    52.07    NaN

2.1 判断缺失值是否存在

  • pd.notnull()
pd.notnull(movie)
Rank    Title    Genre    Description    Director    Actors    Year    Runtime (Minutes)    Rating    Votes    Revenue (Millions)    Metascore
0    True    True    True    True    True    True    True    True    True    True    True    True
1    True    True    True    True    True    True    True    True    True    True    True    True
2    True    True    True    True    True    True    True    True    True    True    True    True
3    True    True    True    True    True    True    True    True    True    True    True    True
4    True    True    True    True    True    True    True    True    True    True    True    True
5    True    True    True    True    True    True    True    True    True    True    True    True
6    True    True    True    True    True    True    True    True    True    True    True    True
7    True    True    True    True    True    True    True    True    True    True    False    True
np.all(pd.notnull(movie))

2.2 存在缺失值nan,并且是np.nan

  • 1、删除

pandas删除缺失值,使用dropna的前提是,缺失值的类型必须是np.nan

# 不修改原数据
movie.dropna()

# 可以定义新的变量接受或者用原来的变量名
data = movie
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值