机器学习2:——Pandas——2:DataFrame运算

本文详细介绍了如何使用Python的DataFrame进行数据处理,包括算术运算如加减法,逻辑运算如筛选条件数据,统计运算如描述性统计、累计统计以及自定义函数应用。通过实例展示了如何计算股票每日数据的变化、进行逻辑筛选、统计分析以及累计求和,并解释了各种函数的使用方法,如describe、min、max、cumsum等。

一.DataFrame运算

学习目标

  • 目标
    • 使用describe完成综合统计
    • 使用max完成最大值计算
    • 使用min完成最小值计算
    • 使用mean完成平均值计算
    • 使用std完成标准差计算
    • 使用idxmin、idxmax完成最大值最小值的索引
    • 使用cumsum等实现累计分析
    • 应用逻辑运算符号实现数据的逻辑筛选
    • 应用isin实现数据的筛选
    • 应用query实现数据的筛选
    • 应用add等实现数据间的加法运算
    • 应用apply函数实现数据的自定义处理
  • 应用
    • 股票每日数据的统计

1 算术运算

  • add(other)

比如进行数学运算加上具体的一个数字

data['open'].add(1)

2018-02-27    24.53
2018-02-26    23.80
2018-02-23    23.88
2018-02-22    23.25
2018-02-14    22.49
  • sub(other)

如果想要得到每天的涨跌大小?求出每天 close- open价格差

# 1、筛选两列数据
close = data['close']
open1 = data['open']
# 2、收盘价减去开盘价
data['m_price_change'] = close.sub(open1)
data.head()

            open     high   close   low   volume  price_change  p_change  turnover my_price_change
2018-02-27    23.53    25.88    24.16    23.53    95578.03    0.63    2.68    2.39    0.63
2018-02-26    22.80    23.78    23.53    22.80    60985.11    0.69    3.02    1.53    0.73
2018-02-23    22.88    23.37    22.82    22.71    52914.01    0.54    2.42    1.32    -0.06
2018-02-22    22.25    22.76    22.28    22.02    36105.01    0.36    1.64    0.90    0.03
2018-02-14    21.49    21.99    21.92    21.48    23331.04    0.44    2.05    0.58    0.43

2 逻辑运算

2.1 逻辑运算符号<、 >、|、 &

  • 例如筛选p_change > 2的日期数据
    • data[‘p_change’] > 2返回逻辑结果
data['p_change'] > 2

2018-02-27     True
2018-02-26     True
2018-02-23     True
2018-02-22    False
2018-02-14     True
# 逻辑判断的结果可以作为筛选的依据
data[data['p_change'] > 2]

pen    high    close    low    volume    price_change    p_change    turnover    my_price_change
2018-02-27    23.53    25.88    24.16    23.53    95578.03    0.63    2.68    2.39    0.63
2018-02-26    22.80    23.78    23.53    22.80    60985.11    0.69    3.02    1.53    0.73
2018-02-23    22.88    23.37    22.82    22.71    52914.01    0.54    2.42    1.32    -0.06
2018-02-14    21.49    21.99    21.92    21.48    23331.04    0.44    2.05    0.58    0.43
2018-02-12    20.70    21.40    21.19    20.63    32445.39    0.82    4.03    0.81    0.49
  • 完成一个多个逻辑判断, 筛选p_change > 2并且open > 15
data[(data['p_change'] > 2) & (data['open'] > 15)]

open    high    close    low    volume    price_change    p_change    turnover    my_price_change
2017-11-14    28.00    29.89    29.34    27.68    243773.23    1.10    3.90    6.10    1.34
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值