# IMPORTING IMPORTANT LIBRARIES
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import math
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import LSTM
#数据集转化,使用前几步预测后一步
def data_transform(dataset, step_size):
data_X, data_Y = [], []
for i in range(len(dataset)-step_size-1):
a = dataset[i:(i+step_size), 0]
data_X.append(a)
data_Y.append(dataset[i + step_size, 0])
return np.array(data_X), np.array(data_Y)
np.random.seed(7)
#读取数据
names=['Date', 'Open', 'High', 'Low', 'Close','Volume']
dataset = pd.read_csv('apple_share_price.csv', usecols=[1,2,3,4],names=names,skiprows=1)
dataset = dataset.reindex(index = dataset.index[::-1])
obs = np.arange(1, len(dataset)
股票预测代码:使用LSTM预测
最新推荐文章于 2024-12-06 20:28:10 发布