Pytorch Embedding的本质理解:查找表

在Pytorch中torch.nn.Embedding层的作用很简单,它的本质就是一张查找表。如下代码所示:

import torch
import torch.nn as nn

torch.manual_seed(1)

embedding = nn.Embedding(5, 3)

print(embedding.weight)

打印出的结果为:

tensor([[ 0.6614,  0.2669,  0.0617],
        [ 0.6213, -0.4519, -0.1661],
        [-1.5228,  0.3817, -1.0276],
        [-0.5631, -0.8923, -0.0583],
        [-0.1955, -0.9656,  0.4224]], requires_grad=True)

我们可以查找第2行和第3行的数据,代码如下所示:

input = torch.LongTensor([1, 2])

result = embedding(input)

print(result)

结果输出为:

tensor([[ 0.6213, -0.4519, -0.1661],
        [-1.5228,  0.3817, -1.0276]], grad_fn=<EmbeddingBackward0>)

当然,我们可以对这个查找表进行特殊操作,例如重置第一行为0,代码如下所示:

import torch
import torch.nn as nn

torch.manual_seed(1)

embedding = nn.Embedding(5, 3, padding_idx=0)

print(embedding.weight)

打印出的结果为:

tensor([[ 0.0000,  0.0000,  0.0000],
        [ 0.6213, -0.4519, -0.1661],
        [-1.5228,  0.3817, -1.0276],
        [-0.5631, -0.8923, -0.0583],
        [-0.1955, -0.9656,  0.4224]], requires_grad=True)

备注:本文参考自《PyTorch面试精华》,这是国内最好的AI电子书。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值