前言
对于电商平台而言,随着业务的不断发展壮大,网站访问量和数据量也随之急剧增长,该情况的产生给服务器带来了一定的负担。从用户体验层面而言,由于服务器端数据处理带来的时延,往往导致页面的响应速度过慢、操作流畅性受阻等问题。这在某种程度上甚至会潜在影响平台的成交量。提供高效率,高质量的服务成为亟待解决的问题。负载均衡策略的出现和发展成为缓解上述问题的有效途径。本文将带你了解基于 Nginx 实现的负载均衡。
什么是负载均衡
负载均衡(Load Balance),它在网络现有结构之上可以提供一种廉价、有效、透明的方法来扩展网络设备和服务器的带宽,并可以在一定程度上增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性等。用官网的话说,它充当着网络流中“交通指挥官”的角色,“站在”服务器前处理所有服务器端和客户端之间的请求,从而最大程度地提高响应速率和容量利用率,同时确保任何服务器都没有超负荷工作。如果单个服务器出现故障,负载均衡的方法会将流量重定向到其余的集群服务器,以保证服务的稳定性。当新的服务器添加到服务器组后,也可通过负载均衡的方法使其开始自动处理客户端发来的请求。详情可参考:What Is Load Balancing?
简言之,负载均衡实际上就是将大量请求进行分布式处理的策略。
什么是 Nginx 负载均衡
通过上文简单的概念介绍,你可能对负载均衡有了一个初步的了解,知道它是一种调度策略。那么问题来了,Nginx 又是什么呢?Nginx 如何实现负载均衡?这就要从正向代理和反向代理说起了。
正向代理
正向代理(Forward Proxy)最大的特点是,客户端非常明确要访问的服务器地址,它代理客户端,替客户端发出请求。比如:科学上网,俗称翻墙(警告⚠️:翻墙操作违反相关法律规定,本文只是为了解释正向代理向读者举个例子,仅供学习参考,切勿盲目翻墙)。
假设客户端想要访问 Google,它明确知道待访问的服务器地址是 https://www.google.com/,但由于条件限制,它找来了一个能够访问到 Google 的”朋友”:代理服务器。客户端把请求发给代理服务器,由代理服务器代替它请求 Google,最终再将响应返回给客户端。这便是一次正向代理的过程,该过程中服务器并不知道真正发出请求的是谁。
反向代理
那么,随着请求量的爆发式增长,服务器觉得自己一个人始终是应付不过来,需要兄弟服务器们帮忙,于是它喊来了自己的兄弟以及代理服务器朋友。此时,来自不同客户端的所有请求实际上都发到了代理服务器处,再由代理服务器按照一定的规则将请求分发给各个服务器。
这就是反向代理(Reverse Proxy),反向代理隐藏了服务器的信息,它代理的是服务器端,代其接收请求。换句话说,反向代理的过程中,客户端并不知道具体是哪台服务器处理了自己的请求。如此一来,既提高了访问速度,又为安全性提供了保证。
在这之中,反向代理需要考虑的问题是,如何进行均衡分工,控制流量,避免出现局部节点负载过大的问题。通俗的讲,就是如何为每台服务器合理的分配请求,使其整体具有更高的工作效率和资源利用率。
Nginx 是什么?
Nginx 作为一个基于 C 实现的高性能 Web 服务器,可以通过系列算法解决上述的负载均衡问题。并且由于它具有高并发、高可靠性、高扩展性、开源等特点,成为开发人员常用的反向代理工具。
负载均衡常用算法
1. 轮询 (round-robin)
轮询为负载均衡中较为基础也较为简单的算法,它不需要配置额外参数。假设配置文件中共有 台服务器,该算法遍历服务器节点列表,并按节点次序每轮选择一台服务器处理请求。当所有节点均被调用过一次后,该算法将从第一个节点开始重新一轮遍历。
http {
upstream myapp1 {
server srv1.example.com;
server srv2.example.com;
server srv3.example.com;
}
server {
listen 80;
location / {
proxy_pass http://myapp1;
}
}
特点:由于该算法中每个请求按时间顺序逐一分配到不同的服务器处理,因此适用于服务器性能相近的集群情况,其中每个服务器承载相同的负载。但对于服务器性能不同的集群而言,该算法容易引发资源分配不合理等问题。
2、加权轮询
为了避免普通轮询带来的弊端,加权轮询应运而生。在加权轮询中,每个服务器会有各自的 weight
。一般情况下,weight
的值越大意味着该服务器的性能越好,可以承载更多的请求。该算法中,客户端的请求按权值比例分配,当一个请求到达时,优先为其分配权值最大的服务器。
特点:加权轮询可以应用于服务器性能不等的集群中,使资源分配更加合理化。
Nginx 加权轮询源码可见:ngx_http_upstream_round_robin.c ,源码分析可参考:关于轮询策略原理的自我理解 。其核心思想是,遍历各服务器节点,并计算节点权值,计算规则为 current_weight
与其对应的 effective_weight
之和,每轮遍历中选出权值最大的节点作为最优服务器节点。其中 effective_weight
会在算法的执行过程中随资源情况和响应情况而改变。较为核心的部分如下:
for (peer = rrp->peers->peer, i = 0;
peer; /* peer 为当前遍历的服务器结点*/
peer = peer->next, i++)
{
...
/* 每轮遍历会更新 peer 当前的权值*/
peer->current_weight += peer->effective_weight;
...
/* best 为当前服务器中的最优节点,即本轮中选中的服务器节点*/
if (best == NULL || peer->current_weight > best->current_weight) {
best = peer;
p = i;
}
...
}
3. IP 哈希(IP hash)
ip_hash
依据发出请求的客户端 IP 的 hash 值来分配服务器,该算法可以保证同 IP 发出的请求映射到同一服务器,或者具有相同 hash 值的不同 IP 映射到同一服务器。
http {
upstream myapp3 {
ip_hash;
server srv1.example.com;
server srv2.example.com;
server srv3.example.com;
}
server {
listen 80;
location / {
proxy_pass http://myapp3;
}
}
}
特点:该算法在一定程度上解决了集群部署环境下 Session 不共享的问题。
Session 不共享问题是说,假设用户已经登录过,此时发出的请求被分配到了 A 服务器,但 A 服务器突然宕机,用户的请求则会被转发到 B 服务器。但由于 Session 不共享,B 无法直接读取用户的登录信息来继续执行其他操作。
实际应用中,我们可以利用 ip_hash
,将一部分 IP 下的请求转发到运行新版本服务的服务器,另一部分转发到旧版本服务器上,实现灰度发布。再者,如遇到文件过大导致请求超时的情况,也可以利用 ip_hash
进行文件的分片上传,它可以保证同客户端发出的文件切片转发到同一服务器,利于其接收切片以及后续的文件合并操作。
4、其他算法
URL hash
url_hash
是根据请求的 URL 的 hash 值来分配服务器。该算法的特点是,相同 URL 的请求会分配给固定的服务器,当存在缓存的时候,效率一般较高。然而 Nginx 默认不支持这种负载均衡算法,需要依赖第三方库。
最小连接数(Least Connections)
假设共有 台服务器,当有新的请求出现时,遍历服务器节点列表并选取其中连接数最小的一台服务器来响应当前请求。连接数可以理解为当前处理的请求数。
http {
upstream backend {
least_conn;
server backend1.example.com;
server backend2.example.com;
server backend3.example.com;
}
server {
listen 80;
location / {
proxy_pass http://backend;
}
}
}
fair
按照请求时长、页面大小智能化分配请求
Nginx实现高并发与常见的优化手段
面试题:
Nginx 是如何实现并发的?为什么 Nginx 不使用多线程?Nginx常见的优化手段有哪些?502错误可能原因有哪些?
面试官心理分析
主要是看应聘人员的对NGINX的基本原理是否熟悉,因为大多数运维人员多多少少都懂点NGINX,但是真正其明白原理的可能少之又少。明白其原理,才能做优化,否则只能照样搬样,出了问题也无从下手。
懂皮毛的人,一般会做个 Web Server,搭建一个 Web 站点;初级运维可能搞个 HTTPS 、配置一个反向代理; 中级运维定义个 upstream、写个正则判断;老鸟做个性能优化、写个ACL,还有可能改改源码(小编表示没有改源码的能力)。
面试题剖析
1. Nginx 是如何实现高并发的?
异步,非阻塞,使用了epoll 和大量的底层代码优化。
如果一个server采用一个进程负责一个request的方式,那么进程数就是并发数。正常情况下,会有很多进程一直在等待中。
而nginx采用一个master进程,多个woker进程的模式。
- master进程主要负责收集、分发请求。每当一个请求过来时,master就拉起一个worker进程负责处理这个请求。
- 同时master进程也负责监控woker的状态,保证高可靠性
- woker进程一般设置为跟cpu核心数一致。nginx的woker进程在同一时间可以处理的请求数只受内存限制,可以处理多个请求。
Nginx 的异步非阻塞工作方式正把当中的等待时间利用起来了。在需要等待的时候,这些进程就空闲出来待命了,因此表现为少数几个进程就解决了大量的并发问题。
每进来一个request,会有一个worker进程去处理。但不是全程的处理,处理到什么程度呢?处理到可能发生阻塞的地方,比如向上游(后端)服务器转发request,并等待请求返回。那么,这个处理的worker很聪明,他会在发送完请求后,注册一个事件:“如果upstream返回了,告诉我一声,我再接着干”。于是他就休息去了。此时,如果再有request 进来,他就可以很快再按这种方式处理。而一旦上游服务器返回了,就会触发这个事件,worker才会来接手,这个request才会接着往下走。
2. 为什么 Nginx 不使用多线程?
Apache: 创建多个进程或线程,而每个进程或线程都会为其分配 cpu 和内存(线程要比进程小的多,所以worker支持比perfork高的并发),并发过大会耗光服务器资源。
Nginx: 采用单线程来异步非阻塞处理请求(管理员可以配置Nginx主进程的工作进程的数量)(epoll),不会为每个请求分配cpu和内存资源,节省了大量资源,同时也减少了大量的CPU的上下文切换。所以才使得Nginx支持更高的并发。
3. Nginx常见的优化配置有哪些?
(1) 调整worker_processes
指Nginx要生成的worker数量,最佳实践是每个CPU运行1个工作进程。
了解系统中的CPU核心数,输入
$ grep processor / proc / cpuinfo | wc -l
(2) 最大化worker_connections
Nginx Web服务器可以同时提供服务的客户端数。与worker_processes结合使用时,获得每秒可以服务的最大客户端数
最大客户端数/秒=工作进程*工作者连接数
为了最大化Nginx的全部潜力,应将工作者连接设置为核心一次可以运行的允许的最大进程数1024。
(3) 启用Gzip压缩
压缩文件大小,减少了客户端http的传输带宽,因此提高了页面加载速度
建议的gzip配置示例如下:( 在http部分内)
(4) 为静态文件启用缓存
为静态文件启用缓存,以减少带宽并提高性能,可以添加下面的命令,限定计算机缓存网页的静态文件:
location ~* .(jpg|jpeg|png|gif|ico|css|js)$ {
expires 365d;
}
(5) Timeouts
keepalive连接减少了打开和关闭连接所需的CPU和网络开销,获得最佳性能需要调整的变量可参考:
(6) 禁用access_logs
访问日志记录,它记录每个nginx请求,因此消耗了大量CPU资源,从而降低了nginx性能。
完全禁用访问日志记录
access_log off;
如果必须具有访问日志记录,则启用访问日志缓冲
access_log /var/log/nginx/access.log主缓冲区= 16k
4. 502报错可能原因有哪些?
(1) FastCGI进程是否已经启动
(2) FastCGI worker进程数是否不够
(3) FastCGI执行时间过长
(4) FastCGI Buffer不够
nginx和apache一样,有前端缓冲限制,可以调整缓冲参数
fastcgi_buffer_size 32k;
fastcgi_buffers 8 32k;
(5) Proxy Buffer不够
如果你用了Proxying,调整
proxy_buffer_size 16k;
proxy_buffers 4 16k;
(6) php脚本执行时间过长
将php-fpm.conf的
<value name="request_terminate_timeout">0s</value>
0s改成一个时间
总结
Nginx 作为一款优秀的反向代理服务器,可以通过不同的负载均衡算法来解决请求量过大情况下的服务器资源分配问题。较为常见的负载均衡算法有轮询、加权轮询、IP 哈希等等,可分别应对不同的请求场景。如果有兴趣可以去 Github 理解下大神的源码,有问题也欢迎一起来探讨~