Linux内核里的“智能指针” (续)

本文介绍了Linux内核中使用kref的三个重要规则:在复制指针时必须使用kref_get;完成指针使用后必须调用kref_put;在尝试获取已存在有效指针的kref-ed结构引用时,必须确保访问串行化。

本文承接前篇,主要介绍几点使用kref时的注意事项。

Linux内核文档kref.txt罗列了三条规则,我们在使用kref时必须遵守。

规则一:

If you make a non-temporary copy of a pointer, especially if  it can be passed to another thread of execution, you must  increment the refcount with kref_get() before passing it off;

规则二:

When you are done with a pointer, you must call kref_put();

规则三:

If the code attempts to gain a reference to a kref-ed structure without already holding a valid pointer, it must serialize access where a kref_put() cannot occur during the kref_get(), and the   structure must remain valid during the kref_get().

 

对于规则一,其实主要是针对多条执行路径(比如另起一个线程)的情况。如果是在单一的执行路径里,比如把指针传递给一个函数,是不需要使用kref_get的。看下面这个例子:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
kref_init(&obj->ref);
 
// do something here
// ...
 
kref_get(&obj->ref);
call_something(obj);
kref_put(&obj->ref);
 
// do something here
// ...
 
kref_put(&obj->ref);

您是不是觉得call_something前后的一对kref_get和kref_put很多余呢?obj并没有逃出我们的掌控,所以它们确实是没有必要的。

但是当遇到多条执行路径的情况就完全不一样了,我们必须遵守规则一。下面是摘自内核文档里的一个例子:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
struct  my_data
{
     .
     .
     struct  kref refcount;
     .
     .
};
 
void  data_release( struct  kref *ref)
{
     struct  my_data *data = container_of(ref, struct  my_data, refcount);
     kfree(data);
}
 
void  more_data_handling( void  *cb_data)
{
     struct  my_data *data = cb_data;
     .
     . do  stuff with data here
     .
     kref_put(&data->refcount, data_release);
}
 
int  my_data_handler( void )
{
     int  rv = 0;
     struct  my_data *data;
     struct  task_struct *task;
     data = kmalloc( sizeof (*data), GFP_KERNEL);
     if  (!data)
         return  -ENOMEM;
     kref_init(&data->refcount);
 
     kref_get(&data->refcount);
     task = kthread_run(more_data_handling, data, "more_data_handling" );
     if  (task == ERR_PTR(-ENOMEM)) {
         rv = -ENOMEM;
         goto  out;
     }
 
     .
     . do  stuff with data here
     .
  out:
     kref_put(&data->refcount, data_release);
     return  rv;
}

因为我们并不知道线程more_data_handling何时结束,所以要用kref_get来保护我们的数据。

注意规则一里的那个单词“before",kref_get必须是在传递指针之前进行,在本例里就是在调用kthread_run之前就要执行kref_get,否则,何谈保护呢?

 

对于规则二我们就不必多说了,前面调用了kref_get,自然要配对使用kref_put。

 

规则三主要是处理遇到链表的情况。我们假设一个情景,如果有一个链表摆在你的面前,链表里的节点是用引用计数保护的,那你如何操作呢?首先我们需要获得节点的指针,然后才可能调用kref_get来增加该节点的引用计数。根据规则三,这种情况下我们要对上述的两个动作串行化处理,一般我们可以用mutex来实现。请看下面这个例子:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
static  DEFINE_MUTEX(mutex);
static  LIST_HEAD(q);
struct  my_data
{
     struct  kref  refcount;
     struct  list_head link;
};
 
static  struct  my_data *get_entry()
{
     struct  my_data *entry = NULL;
     mutex_lock(&mutex);
     if  (!list_empty(&q)) {
         entry = container_of(q.next, struct  my_q_entry, link);
         kref_get(&entry->refcount);
     }
     mutex_unlock(&mutex);
     return  entry;
}
 
static  void  release_entry( struct  kref *ref)
{
     struct  my_data *entry = container_of(ref, struct  my_data, refcount);
 
     list_del(&entry->link);
     kfree(entry);
}
 
static  void  put_entry( struct  my_data *entry)
{
     mutex_lock(&mutex);
     kref_put(&entry->refcount, release_entry);
     mutex_unlock(&mutex);
}

这个例子里已经用mutex来进行保护了,假如我们把mutex拿掉,会出现什么情况?记住,我们遇到的很可能是多线程操作。如果线程A在用container_of取得entry指针之后、调用kref_get之前,被线程B抢先执行,而线程B碰巧又做的是kref_put的操作,当线程A恢复执行时一定会出现内存访问的错误,所以,遇到这种情况一定要串行化处理。

 

我们在使用kref的时候要严格遵循这三条规则,才能安全有效的管理数据。

出处:http://www.cnblogs.com/wwang 
标题基于Spring Boot的音乐播放网站设计与实现研究AI更换标题第1章引言介绍音乐播放网站的研究背景、意义、国内外现状及论文方法与创新点。1.1研究背景与意义阐述音乐播放网站在当今数字化时代的重要性与市场需求。1.2国内外研究现状分析国内外音乐播放网站的发展现状及技术特点。1.3研究方法以及创新点概述论文采用的研究方法及在设计与实现上的创新点。第2章相关理论与技术基础总结音乐播放网站设计与实现所需的相关理论和技术。2.1Spring Boot框架介绍介绍Spring Boot框架的基本原理、特点及其在Web开发中的应用。2.2音乐播放技术概述概述音乐播放的基本原理、流媒体技术及音频处理技术。2.3数据库技术选型分析适合音乐播放网站的数据库技术,如MySQL、MongoDB等。第3章系统设计详细介绍音乐播放网站的整体设计方案。3.1系统架构设计阐述系统的层次结构、模块划分及各模块的功能。3.2数据库设计介绍数据库表结构、关系及数据存储方式。3.3界面设计用户界面的设计原则、布局及交互方式。第4章系统实现详细介绍音乐播放网站的具体实现过程。4.1开发环境与工具介绍开发所需的软件、硬件环境及开发工具。4.2核心功能实现阐述音乐播放、搜索、推荐等核心功能的实现细节。4.3系统测试与优化介绍系统测试的方法、过程及性能优化策略。第5章研究结果与分析呈现音乐播放网站设计与实现的研究结果。5.1系统功能测试结果展示系统各项功能的测试结果,包括功能完整性、稳定性等。5.2用户反馈与评价收集并分析用户对音乐播放网站的使用反馈与评价。5.3对比方法分析将本设计与实现与其他类似系统进行对比分析,突出优势与不足。第6章结论与展望总结音乐播放网站设计与实现的研究成果,并展望未来发展方向。6.1研究结论概括音乐播放网站设计与实现的主要成果及创新点。6.2展望指出当前研究的不足,提出未来改进方向及可
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值