Java中的关键字synchronized

本文是并发系列第二篇,主要介绍Java中synchronized关键字。阐述了多线程环境下同步的必要性,讲解了JVM中synchronized的实现原理,通过示例展示了同步方法和同步块的使用,指出同步块可减少同步代码量、提高吞吐量。

1. 介绍

Java并发系列的文章中,这个是第二篇文章。在前面的一篇文章中,我们学习了Java中的Executor池和Excutors的各种类别。

在这篇文章中,我们会学习synchronized关键字以及我们在多线程的环境中如何使用。

2. 什么是同步?

在一个多线程的环境中,多个线程同时访问相同的资源的情况是存在的。例如,两个线程试图写入同一个文本文件。它们之间没有任何的同步,当两个或多个线程对同一文件具有写访问权时,写入该文件的数据可能会损坏。
同理,在JVM中,每个线程在各自的栈上存储了一份变量的副本。某些其他线程可能会更改这些变量的实际值。但是更改后的值可能不会刷新到其他线程的本地副本中。
这可能导致程序执行错误和非确定性行为。

为了避免这种问题,Java给我们提供了synchronized这有助于实现线程之间的通信,使得只有一个线程访问同步资源,而其他线程等待资源变为空闲。

synchronized关键字可以被用在下面一些不同的方式中,比如一个同步块:

synchronized(someobject){
    //thread-safe code here
}

对方法进行同步:

public synchronized void someMethod(){
    //thread-safe code here
}

3.在JVM中synchronized是如何实现的

当一个线程试图进入一个同步块或者同步方法中的时候,它必须先获得一个同步对象上的锁。一次只可以有一个线程获取锁,并且执行块中的代码。

如果其他线程尝试访问该同步块,则必须等待,直到当前线程执行完同步块的代码。当前线程退出后,锁将被自动释放,其它线程可以获取锁并进入同步代码块。

  • 对于一个synchronized块来说,在synchronized关键字后的括号中指定的对象上获取锁;
  • 对于一个synchronized static方法,锁是在.class对象上获取的;
  • 对于synchronized实例方法来说,锁定是在该类的当前实例上获得的,即该实例(this);

4.同步方法

定义同步方法就像在返回类型之前简单地包含关键字一样简单。我们定义一个顺序打印数字1-5之间的方法。会有两个线程来访问这个方法,所以让我们来看看在没有使用synchronized关键字它们的运行情况, 和我们使用关键字来锁住共享对象会发生什么:

public class NonSynchronizedMethod {

    public void printNumbers() {
        System.out.println("Starting to print Numbers for " + Thread.currentThread().getName());

        for (int i = 0; i < 5; i++) {
            System.out.println(Thread.currentThread().getName() + " " + i);
        }

        System.out.println("Completed printing Numbers for " + Thread.currentThread().getName());
    }
}

现在,让我们实现两个访问该对象并希望运行 printNumbers() 方法的自定义线程:

class ThreadOne extends Thread {

    NonSynchronizedMethod nonSynchronizedMethod;

    public ThreadOne(NonSynchronizedMethod nonSynchronizedMethod) {
        this.nonSynchronizedMethod = nonSynchronizedMethod;
    }

    @Override
    public void run() {
        nonSynchronizedMethod.printNumbers();
    }
}

class ThreadTwo extends Thread {

    NonSynchronizedMethod nonSynchronizedMethod;

    public ThreadTwo(NonSynchronizedMethod nonSynchronizedMethod) {
        this.nonSynchronizedMethod = nonSynchronizedMethod;
    }

    @Override
    public void run() {
        nonSynchronizedMethod.printNumbers();
    }
}

这些线程共享一个相同的对象NonSynchronizedMethod,它们会在这个对象上同时去调用非同步的方法printNumbers()

为了测试这个,写一个main方法来做测试:

public class TestSynchronization {  
    public static void main(String[] args) {

        NonSynchronizedMethod nonSynchronizedMethod = new NonSynchronizedMethod();

        ThreadOne threadOne = new ThreadOne(nonSynchronizedMethod);
        threadOne.setName("ThreadOne");

        ThreadTwo threadTwo = new ThreadTwo(nonSynchronizedMethod);
        threadTwo.setName("ThreadTwo");

        threadOne.start();
        threadTwo.start();

    }
}

运行上面的代码,我们会得到下面的结果:

Starting to print Numbers for ThreadOne  
Starting to print Numbers for ThreadTwo  
ThreadTwo 0  
ThreadTwo 1  
ThreadTwo 2  
ThreadTwo 3  
ThreadTwo 4  
Completed printing Numbers for ThreadTwo  
ThreadOne 0  
ThreadOne 1  
ThreadOne 2  
ThreadOne 3  
ThreadOne 4  
Completed printing Numbers for ThreadOne

虽然ThreadOne先开始执行的,但是ThreadTwo先结束的。

当我们再次运行上面的程序的时候,我们会得到一个不同的结果:

Starting to print Numbers for ThreadOne  
Starting to print Numbers for ThreadTwo  
ThreadOne 0  
ThreadTwo 0  
ThreadOne 1  
ThreadTwo 1  
ThreadOne 2  
ThreadTwo 2  
ThreadOne 3  
ThreadOne 4  
ThreadTwo 3  
Completed printing Numbers for ThreadOne  
ThreadTwo 4  
Completed printing Numbers for ThreadTwo

这些输出完全是偶然的,完全不可预测。每次运行都会给我们一个不同的输出。因为可以有更多的线程,我们可能会遇到问题。在实际场景中,在访问某种类型的共享资源(如文件或其他类型的IO)时,这一点尤为重要,而不是仅仅打印到控制台。

下面我们采用同步的方法,使用synchronized关键字:

public synchronized void printNumbers() {  
    System.out.println("Starting to print Numbers for " + Thread.currentThread().getName());

    for (int i = 0; i < 5; i++) {
        System.out.println(Thread.currentThread().getName() + " " + i);
    }

    System.out.println("Completed printing Numbers for " + Thread.currentThread().getName());
}

代码中只是给方法添加了一个synchronized关键字,没有其它的改动。现在我们运行上面的代码,得到如下所示的结果:

Starting to print Numbers for ThreadOne  
ThreadOne 0  
ThreadOne 1  
ThreadOne 2  
ThreadOne 3  
ThreadOne 4  
Completed printing Numbers for ThreadOne  
Starting to print Numbers for ThreadTwo  
ThreadTwo 0  
ThreadTwo 1  
ThreadTwo 2  
ThreadTwo 3  
ThreadTwo 4  
Completed printing Numbers for ThreadTwo

在这里,我们看到即使两个线程同时运行,只有一个线程一次进入synchronized方法,在这种情况下是ThreadOne。一旦完成执行,ThreadTwo就可以执行printNumbers()方法

5.同步块

多线程的主要目的是尽可能并行地执行任意数量的任务。但是,同步限制了必须执行同步方法或块的线程的并行性。

但是,我们可以尝试通过在同步范围内保留尽可能少的代码来减少以同步方式执行的代码量。可能有许多场景,不是在整个方法上同步,而是可以在方法中同步几行代码。

我们可以使用synchronized块来包含代码的那部分而不是整个方法。也就是说对于需要同步的代码块进行同步,而不是对整个方法进行同步。

由于在同步块内部执行的代码量较少,因此每个线程都会更快地释放锁定。结果,其他线程花费更少的时间等待锁定并且代码吞吐量大大增加。

让我们修改前面的例子,只同步for循环打印数字序列,实际上,它是我们示例中应该同步的唯一代码部分:

public class SynchronizedBlockExample {
    public void printNumbers() {
        System.out.println("Starting to print Numbers for " + Thread.currentThread().getName());
        synchronized (this) {
            for (int i = 0; i < 5; i++) {
                System.out.println(Thread.currentThread().getName() + " " + i);
            }
        }
        System.out.println("Completed printing Numbers for " + Thread.currentThread().getName());
    }
}

运行结果:

Starting to print Numbers for ThreadOne  
Starting to print Numbers for ThreadTwo  
ThreadOne 0  
ThreadOne 1  
ThreadOne 2  
ThreadOne 3  
ThreadOne 4  
Completed printing Numbers for ThreadOne  
ThreadTwo 0  
ThreadTwo 1  
ThreadTwo 2  
ThreadTwo 3  
ThreadTwo 4  
Completed printing Numbers for ThreadTwo

尽管ThreadTwoThreadOne完成其任务之前“开始”打印数字似乎令人担忧,这只是因为我们在停止ThreadTwo锁之前,允许线程通过System.out.println("Completed printing Numbers for " + Thread.currentThread().getName())语句。

这很好,因为我们只想同步每个线程中的数字序列。我们可以清楚地看到两个线程只是通过同步for循环以正确的顺序打印数字。

6.结论

在这个例子中,我们看到了如何在Java中使用synchronized关键字来实现多个线程之间的同步。我们还通过例子了解了何时可以使用synchronized方法和块。

与往常一样,您可以找到此示例中使用的代码

原文:https://stackabuse.com/synchronized-keyword-in-java/

作者:Chandan Singh

译者:lee

在这里插入图片描述

### 光流法C++源代码解析与应用 #### 光流法原理 光流法是一种在计算机视觉领域中用于追踪视频序列中运动物体的方法。它基于亮度不变性假设,即场景中的点在时间上保持相同的灰度值,从而通过分析连续帧之间的像素变化来估计运动方向和速度。在数学上,光流场可以表示为像素位置和时间的一阶导数,即Ex、Ey(空间梯度)和Et(时间梯度),它们共同构成光流方程的基础。 #### C++实现细节 在给定的C++源代码片段中,`calculate`函数负责计算光流场。该函数接收一个图像缓冲区`buf`作为输入,并初始化了几个关键变量:`Ex`、`Ey`和`Et`分别代表沿x轴、y轴和时间轴的像素强度变化;`gray1`和`gray2`用于存储当前帧和前一帧的平均灰度值;`u`则表示计算出的光流矢量大小。 #### 图像处理流程 1. **初始化和预处理**:`memset`函数被用来清零`opticalflow`数组,它将保存计算出的光流数据。同时,`output`数组被填充为白色,这通常用于可视化结果。 2. **灰度计算**:对每一像素点进行处理,计算其灰度值。这里采用的是RGB通道平均值的计算方法,将每个像素的R、G、B值相加后除以3,得到一个近似灰度值。此步骤确保了计算过程的鲁棒性和效率。 3. **光流向量计算**:通过比较当前帧和前一帧的灰度值,计算出每个像素点的Ex、Ey和Et值。这里值得注意的是,光流向量的大小`u`是通过`Et`除以`sqrt(Ex^2 + Ey^2)`得到的,再乘以10进行量化处理,以减少计算复杂度。 4. **结果存储与阈值处理**:计算出的光流值被存储在`opticalflow`数组中。如果`u`的绝对值超过10,则认为该点存在显著运动,因此在`output`数组中将对应位置标记为黑色,形成运动区域的可视化效果。 5. **状态更新**:通过`memcpy`函数将当前帧复制到`prevframe`中,为下一次迭代做准备。 #### 扩展应用:Lukas-Kanade算法 除了上述基础的光流计算外,代码还提到了Lukas-Kanade算法的应用。这是一种更高级的光流计算方法,能够提供更精确的运动估计。在`ImgOpticalFlow`函数中,通过调用`cvCalcOpticalFlowLK`函数实现了这一算法,该函数接受前一帧和当前帧的灰度图,以及窗口大小等参数,返回像素级别的光流场信息。 在实际应用中,光流法常用于目标跟踪、运动检测、视频压缩等领域。通过深入理解和优化光流算法,可以进一步提升视频分析的准确性和实时性能。 光流法及其C++实现是计算机视觉领域的一个重要组成部分,通过对连续帧间像素变化的精细分析,能够有效捕捉和理解动态场景中的运动信息
微信小程序作为腾讯推出的一种轻型应用形式,因其便捷性与高效性,已广泛应用于日常生活中。以下为该平台的主要特性及配套资源说明: 特性方面: 操作便捷,即开即用:用户通过微信内搜索或扫描二维码即可直接使用,无需额外下载安装,减少了对手机存储空间的占用,也简化了使用流程。 多端兼容,统一开发:该平台支持在多种操作系统与设备上运行,开发者无需针对不同平台进行重复适配,可在一个统一的环境中完成开发工作。 功能丰富,接口完善:平台提供了多样化的API接口,便于开发者实现如支付功能、用户身份验证及消息通知等多样化需求。 社交整合,传播高效:小程序深度嵌入微信生态,能有效利用社交关系链,促进用户之间的互动与传播。 开发成本低,周期短:相比传统应用程序,小程序的开发投入更少,开发周期更短,有助于企业快速实现产品上线。 资源内容: “微信小程序-项目源码-原生开发框架-含效果截图示例”这一资料包,提供了完整的项目源码,并基于原生开发方式构建,确保了代码的稳定性与可维护性。内容涵盖项目结构、页面设计、功能模块等关键部分,配有详细说明与注释,便于使用者迅速理解并掌握开发方法。此外,还附有多个实际运行效果的截图,帮助用户直观了解功能实现情况,评估其在实际应用中的表现与价值。该资源适用于前端开发人员、技术爱好者及希望拓展业务的机构,具有较高的参考与使用价值。欢迎查阅,助力小程序开发实践。资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值