【数据结构基础】树 - 前缀树(Trie Tree)

Trie树是一种用于高效字符串检索的数据结构,常用于搜索引擎和词频统计。它利用字符串公共前缀减少查询时间,避免无谓的比较。文章介绍了Trie树的节点结构、插入与查找方法,以及压缩形式如基数树和双数组Trie树,强调了它们在空间和时间复杂度上的优势。
Trie,又称字典树、单词查找树或键树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高。

什么是前缀树

在计算机科学中,trie,又称前缀树或字典树,是一种有序树,用于保存关联数组,其中的键通常是字符串。与二叉查找树不同,键不是直接保存在节点中,而是由节点在树中的位置决定。一个节点的所有子孙都有相同的前缀,也就是这个节点对应的字符串,而根节点对应空字符串。一般情况下,不是所有的节点都有对应的值,只有叶子节点和部分内部节点所对应的键才有相关的值。

Trie 这个术语来自于 retrieval。根据词源学,trie 的发明者 Edward Fredkin 把它读作/ˈtriː/ “tree”。但是,其他作者把它读作/ˈtraɪ/ “try”。trie 中的键通常是字符串,但也可以是其它的结构。trie 的算法可以很容易地修改为处理其它结构的有序序列,比如一串数字或者形状的排列。比如,bitwise trie 中的键是一串位元,可以用于表示整数或者内存地址。trie 树常用于搜索提示。如当输入一个网址,可以自动搜索出可能的选择。当没有完全匹配的搜索结果,可以返回前缀最相似的可能。

上图是一棵Trie树,表示了关键字集合{“a”, “to”, “tea”, “ted”, “ten”, “i”, “in”, “inn”} 。从上图可以归纳出Trie树的基本性质:

  • 根节点不包含字符,除根节点外的每一个子节点都包含一个字符。

  • 从根节点到某一个节点,路径上经过的字符连接起来,为该节点对应的字符串。

  • 每个节点的所有子节点包含的字符互不相同。

  • 从第一字符开始有连续重复的字符只占用一个节点,比如上面的to,和ten,中重复的单词t只占用了一个节点。

前缀树的实现

重点在于节点数据结构,重要的插入和查找方法,以及递归和非递归两种形式。

节点数据结构定义

Node节点中使用map较为高效,用于映射到下一个节点:

public class Trie {
 
  private class Node{

      public boolean isWord; // 是否是某个单词的结束
      
      public TreeMap<Character, Node> next; //到下一个节点的映射

      p
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕设王同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值