三种Uncertainty Sampling主动学习的reference

本文介绍了主动学习中不确定性采样的三种主流方法:最大熵法、最小置信度法及边际置信度法,并探讨了这些方法的基本原理、应用场景及潜在局限性。

In the context of active learning.

The uncertainty instances are known as the most informative instances.

In uncertainty sampling, which is among the most popular approaches, the active learner sequentially queries the label of these instances for which its current prediction is maximally uncertain.

Uncertainty reduction methods assume that the base learner provides a reliable estimate of its confidence in each prediction.

1:maximum entropy 

F. Jing, M. Li, H. Zhang, and B. Zhang, “Entropy-based active learning with support vector machines for content-based image retrieval,” in ICME, 2004, pp. 85–88

Entropy is a well-known measure in information theory to determine the disorder of a system.
 

2:least confidence

Settles defines the most valuable sample as the one with the lowest maximum predicted probability among classe

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值