Python:HSAL

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import KFold

from active_learning.sampler import hierarchical_clustering_AL
from sklearn.metrics import accuracy_score
from sklearn.metrics import cohen_kappa_score
from sklearn.metrics import precision_score

def select_batch(sampler, N, already_selected,
                 **kwargs):
    kwargs["N"] = N
    kwargs["already_selected"] = already_selected
    batch_AL = sampler.select_batch(**kwargs)
    return batch_AL

def HSAL(X,y,budget):
    AccList = []
    KappaList = []
    WAP_list = []
    BudgetCut_list = []
    classNum = len(set(y))
    initialNum = 1
    SEED = 100
    model = LogisticRegression(random_state=100,multi_class='multinomial',solver="lbfgs", max_iter=200)
    KF = KFold(n_splits=10,shuffle=True)
    for train_idx,test_idx in KF.split(X):
        budgetCut = 0
        label_obtain = []
        m = len(train_idx)
        # indices = np.arange(m)
        indices = list(range(m))
        X_train = X[train_idx]
        y_train = y[train_idx]
        X_test = X[test_idx]
        y_test = y[test_idx]
        initialPoints = np.random.choice(indices,initialNum,replace=False)    ##类型为ndarray
        label_obtain.append(y_train[initialPoints[0]])
        indices.remove(initialPoints[0])
        while len(set(y_train[list(initialPoints)])) == 1:
            temPoint =np.random.choice(indices, 1, replace=False)
            initialPoints = np.concatenate((initialPoints,temPoint))
            initialNum += 1
            label_obtain.append(y_train[temPoint[0]])


        if len(np.unique(label_obtain)) == classNum and budgetCut == 0:
            budgetCut = len(label_obtain)

        selected_inds = list(initialPoints)

        sampler = hierarchical_clustering_AL.HierarchicalClusterAL(X_train,y_train,seed=SEED)
        queryNum = budget - initialNum
        for b in range(queryNum):
            batch = 1
            selected_batch_inputs = {"labeled": dict(zip(selected_inds, y_train[selected_inds])), "y": y_train}
            new_selected = select_batch(sampler,batch,selected_inds,**selected_batch_inputs)
            label_obtain.append(y_train[new_selected[0]])

            if budgetCut == 0 and len(np.unique(label_obtain)) == classNum:
                budgetCut = len(label_obtain)

            selected_inds.extend(new_selected)

        model.fit(X_train[selected_inds],y_train[selected_inds])
        y_pred = model.predict(X_test)
        acc = accuracy_score(y_test,y_pred)
        kappa = cohen_kappa_score(y_test,y_pred)
        wap = precision_score(y_test,y_pred,average='weighted')
        print("精度===",acc)
        AccList.append(acc)
        KappaList.append(kappa)
        WAP_list.append(wap)
        BudgetCut_list.append(budgetCut)
        #####selected_inds  是选择的初始样本

    return AccList,KappaList,WAP_list,BudgetCut_list

if __name__ == '__main__':
    X,y = datasets.load_iris(return_X_y=True)
    budget = 30
    AccList,KappaList,WAP_list,BudgetCut_list = HSAL(X, y, budget)
    print("平均精度=",np.mean(AccList),"精度标准差=",np.std(AccList))
    print("平均kappa=",np.mean(KappaList),"kappa标准差=",np.std(KappaList))
    print("平均WAP=",np.mean(WAP_list),"WAP标准差=",np.std(WAP_list))
    print("平均截断预算", np.mean(BudgetCut_list), "截断预算标准差", np.std(BudgetCut_list))

 

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DeniuHe

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值