[NOI2008]志愿者招募,洛谷P3980,线性规划对偶定理以及整数解

本文介绍了一种使用线性规划模型解决志愿者调度问题的方法,通过构建对偶问题并利用单纯形法求解,详细展示了算法实现过程,包括读取输入、构建系数矩阵、执行单纯形迭代以及输出结果。

正题

      题目链接

      这一题很容易构造一个线性规划的模型。

      对于每一天,在这一天的志愿者的总和大于等于需要的人数,最小化每种志愿者乘其单价费用的和。

      它的对偶问题也很容易构造出来。

      再来看对偶之后的A矩阵,一定是一个01矩阵,并且需要的人数和单价都为整数,那么就符合整数解的条件。

      连构造初始解都不用,直接上单纯形。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std;

int n,m;
double a[10010][1010];
double eps=1e-5;

int read(){
	int x=0;
	char ch=getchar();
	while(ch<'0' || ch>'9') ch=getchar();
	while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
	return x;
}

void pivot(int x,int y){
	double temp=a[x][y];a[x][y]=1;
	for(int i=0;i<=n;i++) a[x][i]/=temp;
	for(int i=0;i<=m;i++) if(x!=i){
		temp=a[i][y];a[i][y]=0;
		for(int j=0;j<=n;j++) a[i][j]-=temp*a[x][j];
	}
}

void simplex(){
	int x,y;
	double mmin;
	while(1){
		x=y=0;
		for(int i=1;i<=n;i++) if(a[0][i]>eps) {y=i;break;}
		if(y==0) break;
		mmin=(double)1e15;
		for(int i=1;i<=m;i++) if(a[i][y]>eps && a[i][0]/a[i][y]<mmin) mmin=a[i][0]/a[i][y],x=i;
		if(x==0) break;
		pivot(x,y);
	}
}

int main(){
	n=read();m=read();
	for(int i=1;i<=n;i++) a[0][i]=read();
	int x,y,c;
	for(int i=1;i<=m;i++){
		x=read();y=read();c=read();
		a[i][0]=c;
		for(int j=x;j<=y;j++) a[i][j]=1;
	}
	simplex();
	printf("%.0lf",-a[0][0]);
}

 

<think>好的,用户需要查找洛谷P1173 NOI2016网格问题的Python决方案或代码实现。首先,我需要回忆一下这个题目的具体要求。题目大意是判断一个网格是否会被障碍物分成不连通的部分,这可能涉及到图论中的割点或割边判断。 接下来,我需要考虑如何用Python实现这个问题的法。这类题目通常需要高效的算法,因为数据规模可能较大。Python在处理大数据时可能会遇到性能问题,所以需要考虑优化方法。 首先,题目中的网格可以看作是一个图,其中某些格子被障碍物占据。判断是否存在割点,即移除某个点后图是否不连通,这是关键。Tarjan算法通常用于寻找割点,但实现起来需要注意细节,尤其是用Python时递归深度可能受限,可能需要用迭代方式或者优化代码。 然后,我需要查阅是否有现有的Python法。不过用户提到站内引用中的内容似乎与快速排序或其他问题相关,可能不直接适用。但根据引用[2],用户提到了代码优化和UB(未定义行为)的问题,这提示在编写Python代码时需要注意避免类似错误,比如确保所有分支都有返回值,避免无限循环等。 另外,用户可能需要的是具体的代码示例。考虑到Python在二维网格问题中的处理,通常会用坐标转换、邻接表或矩阵来表示图结构。对于割点检测,可以使用Tarjan算法,维护每个节点的dfn(发现时间)和low(能回溯到的最早节点)值,判断是否存在子节点无法通过其他路径回到祖先节点。 不过,Python的递归深度限制可能对Tarjan算法产生影响,尤其是在大网格情况下。因此,可能需要用非递归的DFS实现,或者调整递归深度限制。但这也可能导致代码复杂度增加。 另外,题目中的障碍物可能形成多个连通块,需要处理多个情况。比如,当障碍物数量较少时,可能直接判断是否形成包围圈;当障碍物较多时,需要更复杂的判断逻辑。 总结步骤可能包括: 1. 将网格转换为图结构,标记障碍物。 2. 使用Tarjan算法寻找割点。 3. 判断是否存在割点导致图不连通。 4. 处理特殊情况,如网格过小、障碍物数量不足等。 在编写Python代码时,需要注意数据结构的效率,比如使用集合或字典来快速访问节点,避免重复计算。此外,可能的优化包括剪枝、预处理等。 最后,根据用户提供的引用,虽然引用内容不直接相关,但需要注意代码的正确性和优化,避免出现未定义行为或逻辑错误。例如,确保所有函数都有正确的返回语句,避免因编译器优化导致的错误,这在Python中可能表现为逻辑错误而非运行错误。</think>关于洛谷 P1173 NOI2016 网格问题的 Python 法,该问题属于图论中的连通性判断问题,需要判断是否存在障碍物形成的割点导致网格不连通。以下是题思路和实现要点: --- ### **问题核心分析** 题目要求判断 $n \times m$ 网格中,给定 $c$ 个障碍物的位置后,是否会将网格分割为多个不连通区域。关键在于判断是否存在 **割点**(即移除该点会导致图不连通)或 **割边**。 --- ### **算法选择** 1. **Tarjan 算法**:用于寻找无向图的割点。若存在割点,则网格可能被分割。 2. **连通性检测**:需考虑障碍物分布对整体连通性的影响,特别是边界情况和稀疏障碍物场景[^1]。 --- ### **Python 实现步骤** #### 1. **坐标离散化与邻接表构建** 将网格坐标转换为图中的节点,并为每个非障碍物节点建立邻接关系: ```python def build_graph(n, m, obstacles): obstacles_set = set(obstacles) graph = defaultdict(list) directions = [(-1,0), (1,0), (0,-1), (0,1)] for x in range(n): for y in range(m): if (x, y) not in obstacles_set: for dx, dy in directions: nx, ny = x + dx, y + dy if 0 <= nx < n and 0 <= ny < m and (nx, ny) not in obstacles_set: graph[(x, y)].append((nx, ny)) return graph ``` #### 2. **Tarjan 算法实现割点检测** 通过深度优先搜索(DFS)计算每个节点的 `dfn`(发现时间)和 `low`(回溯值): ```python def find_cut_points(graph, start): visited = set() dfn, low = {}, {} parent = {} cut_points = set() time = 0 def tarjan(u): nonlocal time dfn[u] = low[u] = time time += 1 children = 0 for v in graph[u]: if v not in dfn: parent[v] = u children += 1 tarjan(v) low[u] = min(low[u], low[v]) if parent.get(u) is None and children > 1: cut_points.add(u) elif parent.get(u) is not None and low[v] >= dfn[u]: cut_points.add(u) elif v != parent.get(u): low[u] = min(low[u], dfn[v]) tarjan(start) return cut_points ``` #### 3. **特殊情况处理** - **极小网格**:如 $n \times m \leq 2$ 时无需判断。 - **障碍物数量不足**:若障碍物数量少于 2,则无法分割网格[^2]。 --- ### **完整代码框架** ```python from collections import defaultdict def main(): n, m, c = map(int, input().split()) obstacles = [tuple(map(int, input().split())) for _ in range(c)] if n * m - c < 2: print("No") return if c == 0: print("Yes" if n * m >= 2 else "No") return graph = build_graph(n, m, obstacles) nodes = list(graph.keys()) if not nodes: print("No") return cut_points = find_cut_points(graph, nodes[0]) print("Yes" if len(cut_points) > 0 else "No") if __name__ == "__main__": main() ``` --- ### **注意事项** 1. **性能优化**:Python 递归深度有限,对大规模网格需改用迭代式 DFS。 2. **边界条件**:注意坐标范围和障碍物去重。 3. **连通性验证**:需确保所有非障碍物节点均被访问,防止漏判。 --- 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值