BUS 1013 Business Entrepreneurship and Innovation (BEI) Semester 2 Academic Year 2024/2025Matlab

Java Python BUS 1013

Individual Assignment 1

Business, Entrepreneurship, and Innovation (BEI)

Semester 2,Academic Year 2024/2025

Task: Write a 5-page report on The economic potential of generative AI:  The next productivity frontier. Conduct research and find pieces of news reports about the economic, geopolitical, and other effects of Gen AI on ANY industries and propose a plan for the policy makers and industry leaders to shape that industry in the future  

Background:

Artificial intelligence (AI) has permeated our lives incrementally, through everything from the tech powering our smartphones to autonomous-driving features on cars to the tools retailers use to surprise and delight consumers. As a result, its progress has been almost imperceptible. Clear milestones, such as when AlphaGo, an AI-based program developed by DeepMind, defeated a world champion Go player in 2016, were celebrated but then quickly faded from the public’s consciousness.

Generative AI applications such as ChatGPT, GitHub Copilot, Stable Diffusion, and others have captured the imagination of people around the world in away AlphaGo  did not, thanks to their broad utility—almost anyone can use them to communicate and create—and preternatural ability to have a conversation with a user. The latest generative AI applications can perform. a range of routine tasks, such as the reorganization and classification of data. But it is their ability to write text, compose music, and create digital art that has garnered headlines and persuaded consumers and households to experiment on their own. As a result, a broader set of stakeholders are grappling with generative AI’s impact on business and society but without much context to help them make sense of it.

The speed at which generative AI technology is developing isn’t making this task any easier. ChatGPT was released in November 2022. Four months later, OpenAI released a new large language model, or LLM, called GPT-4 with markedly improved capabilities. Similarly, by May 2023, Anthropic’s generative AI, Claude, was able to process 100,000 tokens of text, equal to about 75,000 words in a minute—the length of the average novel—compared with roughly 9,000 tokens when it was introduced in March 2023. And in May 2023, Google announced several new features powered by  generative AI, including Search Generative Experience and a new LLM called PaLM  2 that willpower its Bard chatbot, among other Google products.

To grasp what lies ahead requires an understanding of the breakthroughs that have enabled the rise of generative AI, which were decades in the making. For the purposes of this report,we define generative AI as applications typically built using foundation models. These models contain expansive artificial neural networks inspired by the billions of neurons connected in the human brain. Foundation models are part of what is called deep learning, a term that alludes to the many deep layers within neural networks. Deep learning has powered many of the recent advances in AI, but the foundation models powering generative AI applications are a step-change evolution within deep learning. Unlike previous deep learning models, they can process extremely large and varied sets of unstructured data and perform. more than one task.

Foundation models have enabled new capabilities and vastly improved existing ones across abroad range of modalities, including images, video, audio, and computer code. AI trained on these models can perform several functions; it can classify, edit, summarize, answer questions, and draft new content, among other tasks.

All of us are at the beginning of a journey to understand generative AI’s power, reach, and capabilities. This research is the latest in our efforts to assess the impact of this new era of AI. It suggests that generative AI is poised to transform. roles and boost performance across functions such as sales and&dai 写BUS 1013 Business, Entrepreneurship, and Innovation (BEI) Semester 2, Academic Year 2024/2025Matlab nbsp;marketing, customer operations, and software development. In the process, it could unlock trillions of dollars in value across sectors from banking to life sciences.

*(source from: McKinsey & Company, 14, June 2023) Article provided by Dr. Suchan Luo

Please Note:

•   Your analysis should be supported with enough data and references to prove that you have conducted sufficient research in this area.

•   You should use the concepts from the textbook and class lectures of this course and use additional materials from other books and classes to demonstrate your mastery in the subject area.

•   Use the references from recent news and industry analysis and provide your logical arguments to explain how this industry can get rid of this adverse effect.

•   You will be unable to get relevant evidence if you fail to conduct detailed and deep research  about this industry. Your solution to  overcome the problem should be rational, feasible, and organized. Therefore, spend some time searching for and studying relevant materials.

This Individual Assignment 1 is due in Week 4 on Saturday, 8th March 2025, before 5 pm.

Instructions:

1.   Follow APA guidelines for all citations in the text, and the references.

2.   Please DO NOT use Wikipedia as a reference. Use more business reports, company sources, and academic journal/conference articles.

3.   Provide  a  complete  and  accurate  list  of  “References.”  A  minimum  of  5 references will be required for this assignment.

4.   Line spacing for the text (body):  1.5 line  spacing; Font size:  12; Font type: Times New Roman; 2.54cm margin on four sides of the page; Use headings and sub-headings to separate your sub-topics.

5.   The assignment must be written in English Language only. Ensure that the assignment is written carefully to avoid obvious typographical and grammatical mistakes.

6.   You should put all the tables, charts, graphs and pictures in the Appendix. 5- page is for the body of the report and should NOT include the cover page, table of contents, appendix, etc. in the 45-page limit.

7.   Your report should be formatted properly. Any unprofessional looking report will be penalized.

8.    Submit both the hard copy and the soft copy of the report to the Assistant Instructor. The Assistant Instructor will provide you a space in ispace for you to submit your report. NOTE: The assignment report  should be in a Word document and not PDF format.

9.   Your total similarity report should be less than 20% and less than 10% from a single source. Failure to comply will be considered as a failure and receive a Zero in the assignment.

10. Limit AI-generated content to no more than 30% of your work. Use AI- powered  tools   for  efficient  research  and  information  extraction,   such  as summarizing reports and analyzing transcripts. Always verify AI-generated data by cross-checking with reliable sources. Use AI to support, not replace, your critical thinking and analysis.

11. Late submission: Reports submitted after the due date will be considered late.

Late submissions will attract a penalty of 20% of the total  assignment points. No submission will be accepted ONE WEEK beyond the submission deadline. Failure to comply will be considered as a failure and receive a Zero in the assignment         

"D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\Scripts\python.exe" "D:/2025College Student Innovation and Entrepreneurship Project/project/VGG/VGG.py" 显存动态分配成功! 2025-08-12 18:35:47.971859: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2025-08-12 18:35:48.107991: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 5563 MB memory: -> device: 0, name: NVIDIA GeForce RTX 4060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.9 Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_layer (InputLayer) [(128, 224, 224, 3)] 0 _________________________________________________________________ conv2d (Conv2D) (128, 224, 224, 64) 1792 _________________________________________________________________ max_pooling2d (MaxPooling2D) (128, 112, 112, 64) 0 _________________________________________________________________ conv2d_1 (Conv2D) (128, 112, 112, 128) 73856 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (128, 56, 56, 128) 0 _________________________________________________________________ conv2d_2 (Conv2D) (128, 56, 56, 256) 295168 _________________________________________________________________ conv2d_3 (Conv2D) (128, 56, 56, 256) 590080 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (128, 28, 28, 256) 0 _________________________________________________________________ conv2d_4 (Conv2D) (128, 28, 28, 512) 1180160 _________________________________________________________________ conv2d_5 (Conv2D) (128, 28, 28, 512) 2359808 _________________________________________________________________ max_pooling2d_3 (MaxPooling2 (128, 14, 14, 512) 0 _________________________________________________________________ conv2d_6 (Conv2D) (128, 14, 14, 512) 2359808 _________________________________________________________________ conv2d_7 (Conv2D) (128, 14, 14, 512) 2359808 _________________________________________________________________ max_pooling2d_4 (MaxPooling2 (128, 7, 7, 512) 0 _________________________________________________________________ flatten (Flatten) (128, 25088) 0 _________________________________________________________________ dense (Dense) (128, 4096) 102764544 _________________________________________________________________ dense_1 (Dense) (128, 4096) 16781312 _________________________________________________________________ dense_2 (Dense) (128, 1000) 4097000 ================================================================= Total params: 132,863,336 Trainable params: 132,863,336 Non-trainable params: 0 _________________________________________________________________ 2025-08-12 18:35:49.309936: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2) (128, 224, 224, 3) (128,) Epoch 1/100 2025-08-12 18:35:50.581973: I tensorflow/stream_executor/cuda/cuda_dnn.cc:369] Loaded cuDNN version 8600 7/8 [=========================>....] - ETA: 0s - loss: 12.8823 - accuracy: 0.00562025-08-12 18:36:27.569894: W tensorflow/core/framework/op_kernel.cc:1680] Invalid argument: required broadcastable shapes Traceback (most recent call last): File "D:/2025College Student Innovation and Entrepreneurship Project/project/VGG/VGG.py", line 1005, in <module> callbacks=[reduce_lr] # 添加回调函数 File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\engine\training.py", line 1184, in fit tmp_logs = self.train_function(iterator) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\def_function.py", line 885, in __call__ result = self._call(*args, **kwds) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\def_function.py", line 917, in _call return self._stateless_fn(*args, **kwds) # pylint: disable=not-callable File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\function.py", line 3040, in __call__ filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\function.py", line 1964, in _call_flat ctx, args, cancellation_manager=cancellation_manager)) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\function.py", line 596, in call ctx=ctx) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\execute.py", line 60, in quick_execute inputs, attrs, num_outputs) tensorflow.python.framework.errors_impl.InvalidArgumentError: required broadcastable shapes [[node gradient_tape/sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/mul (defined at /2025College Student Innovation and Entrepreneurship Project/project/VGG/VGG.py:1005) ]] [Op:__inference_train_function_5344] Function call stack: train_function Process finished with exit code 1 "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\Scripts\python.exe" "D:/2025College Student Innovation and Entrepreneurship Project/project/VGG/VGG.py" 显存动态分配成功! 2025-08-12 18:35:47.971859: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX AVX2 To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2025-08-12 18:35:48.107991: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 5563 MB memory: -> device: 0, name: NVIDIA GeForce RTX 4060 Laptop GPU, pci bus id: 0000:01:00.0, compute capability: 8.9 Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_layer (InputLayer) [(128, 224, 224, 3)] 0 _________________________________________________________________ conv2d (Conv2D) (128, 224, 224, 64) 1792 _________________________________________________________________ max_pooling2d (MaxPooling2D) (128, 112, 112, 64) 0 _________________________________________________________________ conv2d_1 (Conv2D) (128, 112, 112, 128) 73856 _________________________________________________________________ max_pooling2d_1 (MaxPooling2 (128, 56, 56, 128) 0 _________________________________________________________________ conv2d_2 (Conv2D) (128, 56, 56, 256) 295168 _________________________________________________________________ conv2d_3 (Conv2D) (128, 56, 56, 256) 590080 _________________________________________________________________ max_pooling2d_2 (MaxPooling2 (128, 28, 28, 256) 0 _________________________________________________________________ conv2d_4 (Conv2D) (128, 28, 28, 512) 1180160 _________________________________________________________________ conv2d_5 (Conv2D) (128, 28, 28, 512) 2359808 _________________________________________________________________ max_pooling2d_3 (MaxPooling2 (128, 14, 14, 512) 0 _________________________________________________________________ conv2d_6 (Conv2D) (128, 14, 14, 512) 2359808 _________________________________________________________________ conv2d_7 (Conv2D) (128, 14, 14, 512) 2359808 _________________________________________________________________ max_pooling2d_4 (MaxPooling2 (128, 7, 7, 512) 0 _________________________________________________________________ flatten (Flatten) (128, 25088) 0 _________________________________________________________________ dense (Dense) (128, 4096) 102764544 _________________________________________________________________ dense_1 (Dense) (128, 4096) 16781312 _________________________________________________________________ dense_2 (Dense) (128, 1000) 4097000 ================================================================= Total params: 132,863,336 Trainable params: 132,863,336 Non-trainable params: 0 _________________________________________________________________ 2025-08-12 18:35:49.309936: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2) (128, 224, 224, 3) (128,) Epoch 1/100 2025-08-12 18:35:50.581973: I tensorflow/stream_executor/cuda/cuda_dnn.cc:369] Loaded cuDNN version 8600 7/8 [=========================>....] - ETA: 0s - loss: 12.8823 - accuracy: 0.00562025-08-12 18:36:27.569894: W tensorflow/core/framework/op_kernel.cc:1680] Invalid argument: required broadcastable shapes Traceback (most recent call last): File "D:/2025College Student Innovation and Entrepreneurship Project/project/VGG/VGG.py", line 1005, in <module> callbacks=[reduce_lr] # 添加回调函数 File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\keras\engine\training.py", line 1184, in fit tmp_logs = self.train_function(iterator) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\def_function.py", line 885, in __call__ result = self._call(*args, **kwds) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\def_function.py", line 917, in _call return self._stateless_fn(*args, **kwds) # pylint: disable=not-callable File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\function.py", line 3040, in __call__ filtered_flat_args, captured_inputs=graph_function.captured_inputs) # pylint: disable=protected-access File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\function.py", line 1964, in _call_flat ctx, args, cancellation_manager=cancellation_manager)) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\function.py", line 596, in call ctx=ctx) File "D:\2025College Student Innovation and Entrepreneurship Project\environment\py3.6(tf2.6+cuda11.2+cudnn8.1)\lib\site-packages\tensorflow\python\eager\execute.py", line 60, in quick_execute inputs, attrs, num_outputs) tensorflow.python.framework.errors_impl.InvalidArgumentError: required broadcastable shapes [[node gradient_tape/sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/mul (defined at /2025College Student Innovation and Entrepreneurship Project/project/VGG/VGG.py:1005) ]] [Op:__inference_train_function_5344] Function call stack: train_function Process finished with exit code 1 报错分析
08-13
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值