1.
把多项式的系数赋给矩阵的每一个元素,再进行加减运算。
2.
能,b=polyder(a)。
3.
P0=[1 4 6];
z=poly2str(P0,x);
P1=[5 3 3];
y=poly2str(P1,x);
z,y
z =
x^2 + 4*x + 6
y =
5*x^2 + 3*x + 3
[q,r]=deconv([1 4 6],[5,3,3])
q =
0.2000
r =
0 3.4000 5.4000
[q,r]=deconv([5,3,3],[1 4 6])
q =
5
r =
0 -17 -27
4.
p=[0.69552 0.436 0.668 1.35];P=poly2str(p,'x')
P =
' 0.69552 x^3 + 0.436 x^2 + 0.668 x + 1.35'
X=rand(5)
X =
0.7577 0.7060 0.8235 0.4387 0.4898
0.7431 0.0318 0.6948 0.3816 0.4456
0.3922 0.2769 0.3171 0.7655 0.6463
0.6555 0.0462 0.9502 0.7952 0.7094
0.1712 0.0971 0.0344 0.1869 0.7547
X=rand(5)
X =
0.7577 0.7060 0.8235 0.4387 0.4898
0.7431 0.0318 0.6948 0.3816 0.4456
0.3922 0.2769 0.3171 0.7655 0.6463
0.6555 0.0462 0.9502 0.7952 0.7094
0.1712 0.0971 0.0344 0.1869 0.7547
c=polyval(p,X)
c =
2.4091 2.2838 2.5841 1.7858 1.8635
2.3726 1.3717 2.2580 1.7070 1.7958
1.7211 1.5832 1.6278 2.4289 2.1516
2.1711 1.3818 2.9752 2.5066 2.2915
1.4806 1.4196 1.3736 1.4946 2.4014
d=polyvalm(p,X)
d =
5.5064 2.2737 4.3284 3.9313 4.6656
3.1208 2.6850 3.1937 2.9090 3.4951
2.8269 1.4179 4.2597 3.1799 3.7214
3.8728 1.6868 4.2456 5.4994 4.8636
1.0875 0.5457 0.9757 1.0839 3.2996